- ID:
- ivo://CDS.VizieR/J/A+A/574/A102
- Title:
- AGB candidates in NGC 6822
- Short Name:
- J/A+A/574/A102
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The ratio of C- and M-type asymptotic giant branch (AGB) stars is commonly used to estimate the metallicity of extragalactic populations. Sources in the AGB population must therefore be accurately classified as either C- or M-type. Spectroscopic data are presented for candidate C- and M-type AGB stars, previously classified using JHK photometry, in the Local Group dwarf galaxy NGC 6822. This paper aims to evaluate the success of the JHK classification criteria used in order to determine the level of error associated with this method, and to refine the criteria for future studies. The success rate of a second independent method of source classification, the CN-TiO method, is also examined. We also review the validity of the 4kpc radial limit imposed in our previous work. Spectra of 323 sources, distributed across an area of 2deg^2^, were taken using the AAOmega multi-fibre spectrograph on the Anglo-Australian Telescope and have been classified using an automated classification system and spectral standards from the literature. Nearly half (135) of these sources were selected in common with a photometric catalogue that relied on the CN-TiO method. Within this sample we were able to classify 158 sources, including 82 C-type giants and one anomalous M-type giant, all members of NGC 6822, and 75 foreground K- and M-type dwarf sources. All but three of the giant sources are located within 3 kpc of the galactic centre. Using this spectroscopic sample, new JHK photometric criteria for the isolation and classification of C- and M-type AGB stars have been derived. The error rate in the CN-TiO method, arising from stars incorrectly classified as C-type, has been estimated to be ~7%. Based on the new JHK classification criteria, revised estimates of the global C/M ratio, 0.95+/-0.04, and iron abundance, -1.38+/-0.06dex, are presented for NGC 6822.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/540/A135
- Title:
- AGB population of NGC 6822
- Short Name:
- J/A+A/540/A135
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- NGC 6822 is an irregular dwarf galaxy and part of the Local Group. Its close proximity and apparent isolation provide a unique opportunity to study galactic evolution without any obvious strong external influences. This paper aims to study the spatial distribution of the asymptotic giant branch (AGB) population and metallicity in NGC 6822. Using deep, high quality JHK photometry, taken with WFCAM on UKIRT, carbon- and oxygen-rich AGB stars have been isolated. The ratio between their number, the C/M ratio, has then been used to derive the [Fe/H] abundance across the galaxy.
- ID:
- ivo://CDS.VizieR/J/A+A/530/A58
- Title:
- AGB stars in Cen A dwarf galaxies
- Short Name:
- J/A+A/530/A58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the resolved stellar content of early-type dwarf galaxies in the Centaurus A group, to estimate their intermediate-age population fractions. We use near-infrared photometric data taken with the VLT/ISAAC instrument, together with previously analyzed archival HST/ACS data. The combination of the optical and infrared wavelength range permits us to firmly identify luminous asymptotic giant branch stars, which are indicative of an intermediate-age population in these galaxies. We consider one dwarf spheroidal (CenA-dE1) and two dwarf elliptical (SGC1319.1-4216 and ESO269-066) galaxies that are dominated by an old population. The most recent periods of star formation are estimated to have taken place between 2 and 5Gyr ago for SGC1319.1-4216 and ESO269-066, and approximately 9Gyr ago for CenA-dE1. For ESO269-066, we find that the intermediate-age populations are significantly more centrally concentrated than the predominantly old underlying stars. The intermediate-age population fraction is found to be small in the target galaxies, consistent with fractions of up to 15% of the total population. These values might be larger by a factor of two or three, if we considered the observational limitations and the recent discussion about the uncertainties in theoretical models. We suggest that there is a correlation between intermediate-age population fraction and proximity to the dominant group galaxy, with closer dwarfs having slightly smaller fractions, although our sample is too small to draw firm conclusions. Even when considering our results as lower limits, the intermediate-age population fractions for the studied dwarfs are clearly much smaller than those found in similar dwarfs around the Milky Way, but comparable to what is seen for the low-mass M31 companions. Our results confirm our previous work about early-type dwarfs in the Centaurus A group.
- ID:
- ivo://CDS.VizieR/J/MNRAS/394/795
- Title:
- AGB stars in Fornax dwarf spheroidal galaxy
- Short Name:
- J/MNRAS/394/795
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on a multi-epoch study of the Fornax dwarf spheroidal galaxy, made with the Infrared Survey Facility, over an area of about 42x42arcmin^2^. The colour-magnitude diagram shows a broad well-populated giant branch with a tip that slopes downwards from red to blue, as might be expected given Fornax's known range of age and metallicity. The extensive asymptotic giant branch (AGB) includes seven Mira variables and 10 periodic semiregular variables. Five of the seven Miras are known to be carbon rich. Their pulsation periods range from 215 to 470d, indicating a range of initial masses. Three of the Fornax Miras are redder than typical Large Magellanic Cloud (LMC) Miras of similar period, probably indicating particularly heavy mass-loss rates. Many, but not all, of the characteristics of the AGB are reproduced by isochrones from Marigo et al. (2008A&A...482..883M) for a 2Gyr population with a metallicity of Z=0.0025.
- ID:
- ivo://CDS.VizieR/J/MNRAS/385/1270
- Title:
- Age-metallicity relation via photometry
- Short Name:
- J/MNRAS/385/1270
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using a widely used stellar-population synthesis model, we study the possibility of using pairs of AB system colours to break the well-known stellar age-metallicity degeneracy and to give constraints on two luminosity-weighted stellar-population parameters (age and metallicity). We present the relative age and metallicity sensitivities of the AB system colours that relate to the u, B, g, V, r, R, i, I, z, J,H and K bands, and we quantify the ability of various colour pairs to break the age-metallicity degeneracy. The results also show that the stellar ages and metallicities of galaxies observed by the Sloan Digital Sky Survey and the Two-Micron All-Sky Survey can be estimated via photometry data.
- ID:
- ivo://CDS.VizieR/J/A+A/549/A60
- Title:
- Ages and [Fe/H] of M31 globular clusters
- Short Name:
- J/A+A/549/A60
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The formation and evolution of disk galaxies are long standing questions in Astronomy. Understanding the properties of globular cluster systems can lead to important insights on the evolution of its host galaxy. We aim to obtain the stellar population parameters - age and metallicity - of a sample of M31 and Galactic globular clusters. Studying their globular cluster systems is an important step towards understanding their formation and evolution in a complete way.
- ID:
- ivo://CDS.VizieR/J/AJ/152/208
- Title:
- Ages and metallicities for M31 star clusters
- Short Name:
- J/AJ/152/208
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Application of fitting techniques to obtain physical parameters-such as ages, metallicities, and {alpha}-element to iron ratios-of stellar populations is an important approach to understanding the nature of both galaxies and globular clusters (GCs). In fact, fitting methods based on different underlying models may yield different results and with varying precision. In this paper, we have selected 22 confirmed M31 GCs for which we do not have access to previously known spectroscopic metallicities. Most are located at approximately one degree (in projection) from the galactic center. We performed spectroscopic observations with the 6.5m MMT telescope, equipped with its Red Channel Spectrograph. Lick/IDS absorption-line indices, radial velocities, ages, and metallicities were derived based on the EZ_Ages stellar population parameter calculator. We also applied full spectral fitting with the ULySS code to constrain the parameters of our sample star clusters. In addition, we performed {chi}_min_^2^ fitting of the clusters' Lick/IDS indices with different models, including the Bruzual & Charlot models (adopting Chabrier or Salpeter stellar initial mass functions and 1994 or 2000 Padova stellar evolutionary tracks), the galev, and the Thomas et al. models. For comparison, we collected their UVBRIJK photometry from the Revised Bologna Catalogue (v.5) to obtain and fit the GCs' spectral energy distributions (SEDs). Finally, we performed fits using a combination of Lick/IDS indices and SEDs. The latter results are more reliable and the associated error bars become significantly smaller than those resulting from either our Lick/IDS indices-only or our SED-only fits.
- ID:
- ivo://CDS.VizieR/J/ApJ/750/91
- Title:
- Ages and metallicities of old stellar systems
- Short Name:
- J/ApJ/750/91
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a statistical analysis of the properties of a large sample of dynamically hot old stellar systems, from globular clusters (GCs) to giant ellipticals, which was performed in order to investigate the origin of ultracompact dwarf galaxies (UCDs). The data were mostly drawn from Forbes et al. (2008, Cat. J/MNRAS/389/1924). We recalculated some of the effective radii, computed mean surface brightnesses and mass-to-light ratios, and estimated ages and metallicities. We completed the sample with GCs of M31. We used a multivariate statistical technique (K-Means clustering), together with a new algorithm (Gap Statistics) for finding the optimum number of homogeneous sub-groups in the sample, using a total of six parameters (absolute magnitude, effective radius, virial mass-to-light ratio, stellar mass-to-light ratio, and metallicity). We found six groups. FK1 and FK5 are composed of high- and low-mass elliptical galaxies, respectively. FK3 and FK6 are composed of high-metallicity and low-metallicity objects, respectively, and both include GCs and UCDs. Two very small groups, FK2 and FK4, are composed of Local Group dwarf spheroidals. Our groups differ in their mean masses and virial mass-to-light ratios. The relations between these two parameters are also different for the various groups. The probability density distributions of metallicity for the four groups of galaxies are similar to those of the GCs and UCDs. The brightest low-metallicity GCs and UCDs tend to follow the mass-metallicity relation like elliptical galaxies. The objects of FK3 are more metal-rich per unit effective luminosity density than high-mass ellipticals.
- ID:
- ivo://CDS.VizieR/J/MNRAS/443/2634
- Title:
- AGES HI sources in NGC 7448 field
- Short Name:
- J/MNRAS/443/2634
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present completed observations of the NGC 7448 galaxy group and background volume as part of the blind neutral hydrogen Arecibo Galaxy Environment Survey. Our observations cover a region spanning 5{deg}x4{deg}, over a redshift range of approximately -2000<cz<20000km/s. A total of 334 objects are detected, mostly in three overdensities at cz~7500, cz~9600 and cz~11400km/s. The galaxy density is extremely high (15deg^-2^) and many (~24%) show signs of extended HI emission, including some features as much as 800kpc in projected length. We describe the overall characteristics of this environment: kinematics, typical galaxy colours and mass-to-light ratios, and substructure. To aid in the cataloguing of this data set, we present a new fits viewer (FRELLED: fits Realtime Explorer of Low Latency in Every Dimension). This incorporates interactive source cataloguing tools which increase our source extraction speed by approximately a factor of 50.
- ID:
- ivo://CDS.VizieR/J/ApJ/700/103
- Title:
- Ages of star clusters in M33
- Short Name:
- J/ApJ/700/103
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a result of age estimation for star clusters in M33. We obtain color-magnitude diagrams (CMDs) of resolved stars in 242 star clusters from the Hubble Space Telescope/Wide Field Planetary Camera 2 images. We estimate ages of 100 star clusters among these, by fitting the Padova theoretical isochrones to the observational CMDs. Age distribution of the star clusters shows a dominant peak at log(t)~7.8. Majority of star clusters are younger than log(t)=9.0, while 10 star clusters are older than log(t)~9.0. There is only one cluster younger than log(t)=7 in this study, which is in contrast with the results based on the integrated photometry of star clusters in the previous studies. Radial distribution of the cluster ages shows that young- to intermediate-age clusters are found from the center to the outer region, while old clusters are distributed farther from the M33 center. We briefly discuss the implication of the results with regard to the formation of the M33 cluster system.