- ID:
- ivo://CDS.VizieR/J/ApJ/849/20
- Title:
- Contents of RESOLVE & ECO galaxy groups
- Short Name:
- J/ApJ/849/20
- Date:
- 18 Nov 2021 00:26:09
- Publisher:
- CDS
- Description:
- We examine the z=0 group-integrated stellar and cold baryonic (stars + cold atomic gas) mass functions (group SMF and CBMF) and the baryonic collapse efficiency (group cold baryonic to dark matter halo mass ratio) using the RESOLVE and ECO survey galaxy group catalogs and a GALFORM semi-analytic model (SAM) mock catalog. The group SMF and CBMF fall off more steeply at high masses and rise with a shallower low-mass slope than the theoretical halo mass function (HMF). The transition occurs at the group-integrated cold baryonic mass M_bary_^cold^~10^11^M_{sun}_. The SAM, however, has significantly fewer groups at the transition mass ~10^11^M_{sun}_ and a steeper low-mass slope than the data, suggesting that feedback is too weak in low-mass halos and conversely too strong near the transition mass. Using literature prescriptions to include hot halo gas and potential unobservable galaxy gas produces a group BMF with a slope similar to the HMF even below the transition mass. Its normalization is lower by a factor of ~2, in agreement with estimates of warm-hot gas making up the remaining difference. We compute baryonic collapse efficiency with the halo mass calculated two ways, via halo abundance matching (HAM) and via dynamics (extended all the way to three-galaxy groups using stacking). Using HAM, we find that baryonic collapse efficiencies reach a flat maximum for groups across the halo mass range of M_halo_~10^11.4-12^M_{sun}_, which we label "nascent groups". Using dynamics, however, we find greater scatter in baryonic collapse efficiencies, likely indicating variation in group hot-to-cold baryon ratios. Similarly, we see higher scatter in baryonic collapse efficiencies in the SAM when using its true groups and their group halo masses as opposed to friends-of-friends groups and HAM masses.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/254/3
- Title:
- CO obs. of molecular clouds in the MW midplane
- Short Name:
- J/ApJS/254/3
- Date:
- 17 Jan 2022 11:34:49
- Publisher:
- CDS
- Description:
- In this work, we study the properties of molecular clouds in the second quadrant of the Milky Way Midplane, from l=104.75{deg} to l=119.75{deg}, and b=-5.25{deg} to b=5.25{deg}, using the ^12^CO, ^13^CO, and C^18^O J=1-0 emission line data from the Milky Way Imaging Scroll Painting project. We identify 857 and 300 clouds in the ^12^CO and ^13^CO spectral cubes, respectively, using the DENDROGRAM + SCIMES algorithms. The distances of the molecular clouds are estimated, and physical properties such as the mass, size, and surface densities of the clouds are tabulated. The molecular clouds in the Perseus Arm are about 30-50 times more massive, and 4-6 times larger than the clouds in the Local Arm. This result, however, is likely to be biased by distance selection effects. The surface densities of the clouds are enhanced in the Perseus Arm, with an average value of ~100M_{sun}_/pc^2^. Here. we select the 40 most extended (>0.35arcdeg^2^) molecular clouds from the ^12^CO catalog to build the H_2_ column density probability distribution function (N-PDF). Some 78% of the N-PDFs of the selected molecular clouds are well fitted with log-normal functions with only small deviations at high densities, corresponding to star-forming regions with scales of ~1-5pc in the Local Arm, and ~5-10pc in the Perseus Arm. About 18% of the selected molecular clouds have power-law N-PDFs at high densities. In these molecular clouds, the majority of the regions fitted with the power law correspond to molecular clumps at sizes of ~1pc, or filaments at widths of ~1pc.
- ID:
- ivo://CDS.VizieR/J/ApJS/247/29
- Title:
- CO obs. of Planck Galactic cold clumps
- Short Name:
- J/ApJS/247/29
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Sixty-five Planck Galactic cold clumps (PGCCs) from the first quadrant (IQuad) and 39 from the anticenter direction region (ACent) were observed in ^12^CO, ^13^CO, and C^18^O J=1-0 lines using the 13.7m telescope of the Purple Mountain Observatory. All the targets were detected in all three lines, except for 12 IQuad and 8 ACent PGCCs without C^18^O detection. Seventy-six and 49 velocity components were obtained in IQuad and ACent respectively; 146 cores were extracted from 76 IQuad clumps and 100 cores from 49 ACent clumps. The average Tex of IQuad cores and ACent cores is 12.4K and 12.1K, respectively. The average line widths of ^13^CO of IQuad cores and ACent cores are 1.55km/s and 1.77km/s, respectively. Among the detected cores, 24 in IQuad and 13 in ACent have asymmetric line profiles. The small blue excesses, ~0.03 in IQuad and 0.01 in ACent, indicate that star formation is not active in these PGCC cores. Power-law fittings of the core mass function to the high-mass end give indices of -0.57 in IQuad and -1.02 in ACent, which are flatter than the slope of the initial mass function given by Salpeter. The large turnover masses of 28M_{sun}_ for IQuad cores and 77M_{sun}_ for ACent cores suggest low star formation efficiencies in PGCCs. The correlation between virial mass and gas mass indicates that most PGCC cores in both regions are not likely pressure-confined.
- ID:
- ivo://CDS.VizieR/J/A+A/324/505
- Title:
- Core velocity dispersions of globular clusters
- Short Name:
- J/A+A/324/505
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present, for 25 Galactic and 10 old Magellanic globular clusters, projected velocity dispersion ({sigma}_p_) measurements obtained by applying a cross-correlation technique to integrated-light spectra. In order to understand and estimate the statistical errors of these measurements due to small numbers of bright stars dominating the integrated light, we provide an extensive discussion based on detailed numerical simulations. These errors are smaller if the integration area is larger and/or the cluster concentration higher. The simulations show that measurements are reliable when the integrated light within the integration area is brighter than a given magnitude. The statistical errors on the {sigma}_p_ measurements of Magellanic globular clusters are small because of a physically large integration area, whereas they can be important for measurements carried out over small central areas in Galactic clusters. The present observational results are used to outline a few characteristics of the globular cluster fundamental plane. In this respect, the old Magellanic globular clusters appear similar to the Galactic clusters.
- ID:
- ivo://CDS.VizieR/J/AJ/152/50
- Title:
- Cosmicflows-3 catalog (CF3)
- Short Name:
- J/AJ/152/50
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Cosmicflows database of galaxy distances that in the second edition contained 8188 entries is now expanded to 17669 entries. The major additions are 2257 distances that we have derived from the correlation between galaxy rotation and luminosity with photometry at 3.6{mu}m obtained with the Spitzer Space Telescope and 8885 distances based on the Fundamental Plane methodology from the Six Degree Field Galaxy Survey collaboration. There are minor augmentations to the Tip of the Red Giant Branch and Type Ia supernova compilations. A zero-point calibration of the supernova luminosities gives a value for the Hubble Constant of 76.2+/-3.4+/-2.7 (+/-rand.+/-sys.)km/s/Mpc. Alternatively, a restriction on the peculiar velocity monopole term representing global infall/outflow implies H_0_=75+/-2km/s/Mpc.
- ID:
- ivo://CDS.VizieR/J/AJ/146/86
- Title:
- Cosmicflows-2 catalog (CF2)
- Short Name:
- J/AJ/146/86
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Cosmicflows-2 is a compilation of distances and peculiar velocities for over 8000 galaxies. Numerically the largest contributions come from the luminosity-line width correlation for spirals, the Tully-Fisher relation (TFR), and the related fundamental plane relation for E/S0 systems, but over 1000 distances are contributed by methods that provide more accurate individual distances: Cepheid, tip of the red giant branch (TRGB), surface brightness fluctuation, Type Ia supernova, and several miscellaneous but accurate procedures. Our collaboration is making important contributions to two of these inputs: TRGB and TFR. A large body of new distance material is presented. In addition, an effort is made to ensure that all the contributions, both our own and those from the literature, are on the same scale. Overall, the distances are found to be compatible with a Hubble constant H_0_=74.4+/-3.0km/s/Mpc. The great interest going forward with this data set will be with velocity field studies. Cosmicflows-2 is characterized by a great density and high accuracy of distance measures locally, falling to sparse and coarse sampling extending to z=0.1.
- ID:
- ivo://CDS.VizieR/J/ApJS/252/20
- Title:
- CO survey of the CMa OB1 complex
- Short Name:
- J/ApJS/252/20
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using the Purple Mountain Observatory 13.7m millimeter telescope at Delingha in China, we have conducted a large-scale simultaneous survey of ^12^CO, ^13^CO, and C^18^O (J=1-0) toward the CMa OB1 complex with a sky coverage of 16.5deg^2^ (221.5{deg}<=l<=227{deg}, -2.5{deg}<=b<=0.5{deg}). Emission from the CMa OB1 complex is found in the range 7km/s<=V_LSR_<=25km/s. The large-scale structure, physical properties, and chemical abundances of the molecular clouds are presented. A total of 83 C^18^O molecular clumps are identified with the GaussClumps algorithm within the mapped region. We find that 94% of these C18O molecular clumps are gravitationally bound. The relationship between their size and mass indicates that none of the C^18^O clumps has the potential to form high-mass stars. Using a semiautomatic IDL algorithm, we newly discover 85 CO outflow candidates in the mapped area, including 23 bipolar outflow candidates. Additionally, a comparative study reveals evidence for a significant variety of physical properties, evolutionary stages, and levels of star formation activity in different subregions of the CMa OB1 complex.
- ID:
- ivo://CDS.VizieR/J/ApJ/662/808
- Title:
- Cusp radius in luminous elliptical galaxies
- Short Name:
- J/ApJ/662/808
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Black hole (BH) masses predicted from the M_BH_-sigma relationship conflict with predictions from the M_BH_-L relationship for high-luminosity galaxies, such as brightest cluster galaxies (BCGs). The M_BH_-L relationship predicts that some BCGs may harbor BHs with M_BH_ approaching 10^10^M_{sun}_ while the M_BH_-sigma relationship always predicts M_BH_<3x10^9^M_{sun}_. We argue that the M_BH_-L relationship is a plausible description for galaxies of high luminosity. If the cores in central stellar density are formed by binary BHs, the inner core cusp radius, r{gamma}, may be an independent witness of M_BH_. Using central structural parameters derived from a large sample of early-type galaxies observed by HST, we argue that L is superior to sigma as an indicator of r{gamma}.
- ID:
- ivo://CDS.VizieR/III/268
- Title:
- DEEP2 Redshift Survey, Data Release 4
- Short Name:
- III/268
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper describes a new catalog that supplements the existing DEEP2 Galaxy Redshift Survey photometric and spectroscopic catalogs with ugriz photometry from two other surveys: the Canada-France-Hawaii Legacy Survey (CFHTLS) and the Sloan Digital Sky Survey (SDSS). Each catalog is cross-matched by position on the sky in order to assign ugriz photometry to objects in the DEEP2 catalogs. We have recalibrated the CFHTLS photometry where it overlaps DEEP2 in order to provide a more uniform data set. We have also used this improved photometry to predict DEEP2 BRI photometry in regions where only poorer measurements were available previously. In addition, we have included improved astrometry tied to SDSS rather than USNO-A2.0 for all DEEP2 objects. In total this catalog contains ~27, 000 objects with full ugriz photometry as well as robust spectroscopic redshift measurements, 64% of which have r > 23. By combining the secure and accurate redshifts of the DEEP2 Galaxy Redshift Survey with ugriz photometry, we have created a catalog that can be used as an excellent testbed for future photo-z studies, including tests of algorithms for surveys such as LSST and DES.
- ID:
- ivo://CDS.VizieR/J/ApJ/799/148
- Title:
- DEIMOS galaxy sample at z~0.7
- Short Name:
- J/ApJ/799/148
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Scaling relations between galaxy structures and dynamics have been studied extensively for early- and late-type galaxies, both in the local universe and at high redshifts. The abundant differences between the properties of disky and elliptical, or star-forming and quiescent, galaxies seem to be characteristic of the local universe; such clear distinctions begin to disintegrate as observations of massive galaxies probe higher redshifts. In this paper we investigate the existence of the mass fundamental plane of all massive galaxies ({sigma}>~100km/s). This work includes local galaxies (0.05<z<0.07) from the Sloan Digital Sky Survey, in addition to 31 star-forming and 72 quiescent massive galaxies at intermediate redshift (z~0.7) with absorption-line kinematics from deep Keck-DEIMOS spectra and structural parameters from Hubble Space Telescope imaging. In two-parameter scaling relations, star-forming and quiescent galaxies differ structurally and dynamically. However, we show that massive star-forming and quiescent galaxies lie on nearly the same mass fundamental plane, or the relationship between stellar mass surface density, stellar velocity dispersion, and effective radius. The scatter in this relation (measured about log{sigma}) is low: 0.072dex (0.055dex intrinsic) at z~0 and 0.10dex (0.08dex intrinsic) at z~0.7. This 3D surface is not unique: virial relations, with or without a dependence on luminosity profile shapes, can connect galaxy structures and stellar dynamics with similar scatter. This result builds on the recent finding that mass fundamental plane has been stable for early-type galaxies since z~2. As we now find that this also holds for star-forming galaxies to z~0.7, this implies that these scaling relations of galaxies will be minimally susceptible to progenitor biases owing to the evolving stellar populations, structures, and dynamics of galaxies through cosmic time.