We combine variability information from the MAssive Compact Halo Objects survey of the Large Magellanic Cloud with infrared photometry from the Spitzer Space Telescope Surveying the Agents of a Galaxy's Evolution survey to create a data set of ~30000 variable red sources. We photometrically classify these sources as being on the first ascent of the red giant branch, or as being in one of three stages along the asymptotic giant branch (AGB): oxygen-rich, carbon-rich, or highly reddened with indeterminate chemistry ("extreme" AGB candidates). We present linear period-luminosity (P-L) relationships for these sources using eight separate infrared bands (J, H, Ks, 3.6, 4.5, 5.8, 8.0, and 24um) as proxies for the luminosity. We find that the wavelength dependence of the slope of the P-L relationship is different for different photometrically determined classes of AGB stars. Stars photometrically classified as O-rich show the least variation of slope with wavelength, while dust enshrouded extreme AGB stars show a pronounced trend toward steeper slopes with increasing wavelength. We find that O-rich AGB stars pulsating in the fundamental mode obey a period-magnitude relation with a slope of -3.41+/-0.04 when magnitude is measured in the 3.6um band, in contrast to C-rich AGB stars, which obey a relation of slope -3.77+/-0.05.
We present detailed chemical abundances for 99 Red Giant Branch stars in the centre of the Sculptor dwarf spheroidal galaxy, which have been obtained from high-resolution VLT/FLAMES spectroscopy. The abundances of Li, Na, alpha-elements (O, Mg, Si, Ca Ti), iron-peak elements (Sc, Cr, Fe, Co, Ni, Zn), r- and s-process elements (Ba, La, Nd, Eu) were all derived using stellar atmosphere models and semi-automated analysis techniques. The iron abundances, covering the range -2.3<[Fe/H]<-0.9, populate the whole metallicity distribution of the galaxy with the exception of the very low metallicity tail. There is a marked decrease in [{alpha}/Fe] over our sample, from the Galactic halo plateau value at low [Fe/H] and then, after a 'knee', a decrease to sub-solar [alpha/Fe] at high [Fe/H]. This is consistent with products of core-collapse supernovae dominating at early times, followed by the onset of supernovae type Ia as early as ~12Gyr ago. The products from low-mass AGB stars, as traced by the s-process, also participate in the chemical evolution of Sculptor with a timescale comparable to that of supernovae type Ia. However, the r-process is consistent with having no time delay relative to core-collapse supernovae, at least at the later stages of the chemical evolution in Sculptor. Using the simple and well-behaved chemical evolution of Sculptor, we further derive empirical constraints on the relative importance of massive stars and supernovae type Ia to the nucleosynthesis of individual iron-peak and alpha-elements. The most important contribution of supernovae typeIa is to the iron-peak elements: Fe, Cr and Mn; but there is also a modest but non-negligible contribution to both the heavier alpha-elements: S, Ca and Ti, and some of the iron-peak elements: Sc and Co. We see only very small or no contribution to O, Mg, Ni and Zn from supernovae type Ia in Sculptor. The observed chemical abundances in Sculptor show no evidence of a significantly different initial mass function, compared to that of the Milky Way. With the exception of neutron-capture elements at low [Fe/H], the scatter around mean trends in Sculptor for [Fe/H]>-2.3 is extremely low, and compatible with observational errors. Combined with the small scatter in the age-elemental abundances relation, this calls for an efficient mixing of metals in the gas in the centre of Sculptor since ~12Gyr ago.
We present the first high-resolution spectroscopic observations of one red giant star in the ultra-faint dwarf galaxy Segue 2, which has the lowest total mass (including dark matter) estimated for any known galaxy. These observations were made using the Magellan Inamori Kyocera Echelle (MIKE) spectrograph on the Magellan II Telescope at Las Campanas Observatory. We perform a standard abundance analysis of this star, SDSS J021933.13+200830.2, and present abundances of 21 species of 18 elements as well as upper limits for 25 additional species. We derive [Fe/H]=-2.9, in excellent agreement with previous estimates from medium-resolution spectroscopy. Our main result is that this star bears the chemical signatures commonly found in field stars of similar metallicity. The heavy elements produced by neutron-capture reactions are present, but they are deficient at levels characteristic of stars in other ultra-faint dwarf galaxies and a few luminous dwarf galaxies. The otherwise normal abundance patterns suggest that the gas from which this star formed was enriched by metals from multiple Type II supernovae reflecting a relatively well-sampled IMF. This adds to the growing body of evidence indicating that Segue 2 may have been substantially more massive in the past.
We present distance determinations for a large and clean sample of red giant branch stars selected from the ninth data release of the Sloan Digital Sky Survey (Adelman-McCarthy et al. 2012ApJS..203...21A, Cat. V/139). The distances are calculated based on both observational cluster fiducials and theoretical isochrones. Distributions of distances from the two methods are very similar with peaks at about 10 kpc and tails extending to more than 70 kpc. We find that distances from the two methods agree well for the majority of the sample stars; though, on average, distances based on isochrones are 10% higher than those based on fiducials. We test the accuracy of our distance determinations using 332 stars from 10 Galactic globular and open clusters. The average relative deviation from the literature cluster distances is 4% for the fiducial-based distances and 8% for the isochrone-based distances, both of which are within the uncertainties. We find that the effective temperature and surface gravity derived from low-resolution spectra are not accurate enough to essentially improve the performance of distance determinations. However, for stars with significant extinction, effective temperature may help to better constrain their distances to some extent. We make our sample stars and their distances available from an online catalog. The catalog comprises 17941 stars with reasonable distance estimations reaching to more than 70 kpc, which is suitable for the investigation of the formation and evolution of the Galaxy, especially the Galactic halo.
We present a survey for OH maser emission at 18cm in the direction of 196 IRAS point sources. The primary aim of the survey was to detect OH maser emission from post-asymptotic giant branch (post-AGB) stars. OH emission and/or absorption was detected in the direction of 77 sources of which 57 OH detections were previously unknown, giving an overall detection rate of 39 per cent. Fourteen maser sources associated with evolved stars or planetary nebulae were found, corresponding to 7 per cent of the total observed. These included three planetary nebulae (two new OH detections), nine post-AGB stars (three new OH detections) and two cold OH/IR stars (both previously known). Two sources were of uncertain identification (both new OH detections). The remainder of the OH sources were identified with young stellar objects and with HII regions. The survey included the detection of OH maser emission from HD 101584, an early-type supergiant at high Galactic latitude. For several of the post-AGB stars, changes have occurred in the OH spectral profiles over a period of several years. This is interpreted as evidence for rapid changes in the stellar winds, due either to interactions with stellar companions, novae-like events or rapid stellar evolution.
Search for sodium-rich stars among metal-poor stars
Short Name:
J/AJ/157/70
Date:
21 Oct 2021
Publisher:
CDS
Description:
Sodium-rich stars are often found in globular clusters giants. However, some sodium-rich stars have been found among field metal-poor stars. These stars are considered as evaporated from globular clusters. Identified such kind of stars among the field stars in the Galaxy may provide insights of which mechanism was responsible for the ejection from a globular cluster and may reveal some chemical peculiarity. Therefore, we started a search, using high-resolution spectroscopy, among metal-poor stars from several sources of the literature to find a sodium-rich star. Here we present the results for the temperature, gravity, metallicity, and sodium abundances for the stars of our sample. For many of them we determined the temperature, gravity, metallicity, and sodium abundances for the first time. As a result of our search we found one star, CD-23{deg}16310, which has a [Na/Fe] ratio of +1.09. We also show that CD-23{deg}16310 is not a carbon-enhanced metal-poor (CEMP) star since carbon is not enriched but is nitrogen-rich. We did not detect any variation of the radial velocity that would support the hypothesis of mass transfer. Thus, the high sodium and nitrogen abundance could be due to a strong internal mixing process, suggesting that CD-23{deg}16310 is an early asymptotic giant branch star.
Among late-type red giants, an interesting change occurs in the structure of the outer atmospheric layers as one moves to later spectral types in the Hertzsprung-Russell diagram: a chromosphere is always present, but the coronal emission diminishes and a cool massive wind steps in. Where most studies have focussed on short-wavelength observations, this article explores the influence of the chromosphere and the wind on long-wavelength photometric measurements. The goal of this study is to assess wether a set of standard near-infrared calibration sources are fiducial calibrators in the far-infrared, beyond 50um. The observational spectral energy distributions were compared with the theoretical model predictions for a sample of nine K- and M-giants. The discrepancies found are explained using basic models for flux emission originating in a chromosphere or an ionised wind.
Oscillation modes with a mixed character, as observed in evolved low-mass stars, are highly sensitive to the physical properties of the innermost regions. Measuring their properties is therefore extremely important to probe the core, but requires some care, due to the complexity of the mixed-mode pattern. The aim of this work is to provide a consistent description of the mixed-mode pattern of low-mass stars, based on the asymptotic expansion. We also study the variation of the gravity offset epsilon_g_ with stellar evolution. We revisit previous works about mixed modes in red giants and empirically test how period spacings, rotational splittings, mixed-mode widths, and heights can be estimated in a consistent view, based on the properties of the mode inertia ratios. From the asymptotic fit of the mixed-mode pattern of a large set of red giants at various evolutionary stages, we derive unbiased and precise asymptotic parameters. As the asymptotic expansion of gravity modes is verified with a precision close to the frequency resolution for stars on the red giant branch (10^-4^ in relative values), we can derive accurate values of the asymptotic parameters. We decipher the complex pattern in a rapidly rotating star, and explain how asymmetrical splittings can be inferred. We also revisit the stellar inclinations in two open clusters, NGC 6819 and NGC 6791: our results show that the stellar inclinations in these clusters do not have privileged orientation in the sky. The variation of the asymptotic gravity offset with stellar evolution is investigated in detail. We also derive generic properties that explain under which conditions mixed modes can be observed.
The space missions CoRoT and Kepler have provided photometric data of unprecedented quality for asteroseismology. A very rich oscillation pattern has been discovered for red giants, including mixed modes that are used to decipher the red giants' interiors. They carry information on the radiative core of red giant stars and bring strong constraints on stellar evolution. Since more than 15000 red giant light curves have been observed by Kepler, we have developed a simple and efficient method for automatically characterizing the mixed-mode pattern and measuring the asymptotic period spacing. With the asymptotic expansion of the mixed modes, we have revealed the regularity of the gravity-mode pattern. The stretched periods were used to study the evenly space periods with a Fourier analysis and to measure the gravity period spacing, even when rotation severely complicates the oscillation spectra.
We present the CoRoGEE dataset -- obtained from CoRoT lightcurves for 606 red giant stars in two fields of the Galactic disc which have been co-observed for an ancillary project of the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The CoRoGEE stars cover a large radial range of the Milky Way's disc (5kpc<RGal<14kpc) and thus provide a valuable dataset for Galactic Archaeology studies. We have used the Bayesian parameter estimation code PARAM to calculate distances, extinctions, masses, and ages for these stars in a homogeneous analysis, resulting in relative statistical uncertainties of 2% in distance, 4% in radius, ~9% in mass and ~25% in age. We also assess systematic age uncertainties due to different input physics and mass loss.