- ID:
- ivo://CDS.VizieR/J/MNRAS/465/3558
- Title:
- HATLAS candidate lensed galaxies
- Short Name:
- J/MNRAS/465/3558
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a sample of 80 candidate strongly lensed galaxies with flux density above 100mJy at 500{mu}m extracted from the Herschel Astrophysical Terahertz Large Area Survey, over an area of 600deg^2^. Available imaging and spectroscopic data allow us to confirm the strong lensing in 20 cases and to reject it in one case. For other eight objects, the lensing scenario is strongly supported by the presence of two sources along the same line of sight with distinct photometric redshifts. The remaining objects await more follow-up observations to confirm their nature. The lenses and the background sources have median redshifts z_L_=0.6 and z_S_=2.5, respectively, and are observed out to z_L_=1.2 and z_S_=4.2. We measure the number counts of candidate lensed galaxies at 500{mu}m and compare them with theoretical predictions, finding a good agreement for a maximum magnification of the background sources in the range 10-20. These values are consistent with the magnification factors derived from the lens modelling of individual systems. The catalogue presented here provides sub-mm bright targets for follow-up observations aimed at exploiting gravitational lensing, to study with unprecedented details the morphological and dynamical properties of dusty star-forming regions in z>=1.5 galaxies.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/749/65
- Title:
- H-ATLAS search for strongly lensed galaxies
- Short Name:
- J/ApJ/749/65
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- While the selection of strongly lensed galaxies (SLGs) with 500{mu}m flux density S_500_>100mJy has proven to be rather straightforward, for many applications it is important to analyze samples larger than the ones obtained when confining ourselves to such a bright limit. Moreover, only by probing to fainter flux densities is it possible to exploit strong lensing to investigate the bulk of the high-z star-forming galaxy population. We describe HALOS (the Herschel-ATLAS Lensed Objects Selection), a method for efficiently selecting fainter candidate SLGs, reaching a surface density of =~1.5-2/deg^2^, i.e., a factor of about 4-6 higher than that at the 100mJy flux limit. HALOS will allow the selection of up to ~1000 candidate SLGs (with amplifications {mu}>~2) over the full H-ATLAS survey area. Applying HALOS to the H-ATLAS Science Demonstration Phase field (=~14.4deg^2^) we find 31 candidate SLGs, whose candidate lenses are identified in the VIKING near-infrared catalog. Using the available information on candidate sources and candidate lenses we tentatively estimate a =~72% purity of the sample. As expected, the purity decreases with decreasing flux density of the sources and with increasing angular separation between candidate sources and lenses. The redshift distribution of the candidate lensed sources is close to that reported for most previous surveys for lensed galaxies, while that of candidate lenses extends to redshifts substantially higher than found in the other surveys. The counts of candidate SLGs are also in good agreement with model predictions. Even though a key ingredient of the method is the deep near-infrared VIKING photometry, we show that H-ATLAS data alone allow the selection of a similarly deep sample of candidate SLGs with an efficiency close to 50%; a slightly lower surface density (=~ 1.45/deg2) can be reached with a ~70% efficiency.
- ID:
- ivo://CDS.VizieR/J/ApJ/798/95
- Title:
- HE1104-1805 BVRIJ light curves
- Short Name:
- J/ApJ/798/95
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The gravitationally lensed quasar HE 1104-1805 has been observed at a variety of wavelengths ranging from the mid-infrared to X-ray for nearly 20yr. We combine flux ratios from the literature, including recent Chandra data, with new observations from the SMARTS telescope and Hubble Space Telescope, and use them to investigate the spatial structure of the central regions using a Bayesian Monte Carlo analysis of the microlensing variability. The wide wavelength coverage allows us to constrain not only the accretion disk half-light radius r_1/2_, but the power-law slope {xi} of the size-wavelength relation r_1/2_{prop.to}{lambda}^{xi}^. With a logarithmic prior on the source size, the (observed-frame) R-band half-light radius log (r_1/2_/cm) is 16.0_-0.4_^+0.3^, and the slope {xi} is 1.0_-0.56_^+0.30^. We put upper limits on the source size in soft (0.4-1.2 keV) and hard (1.2-8keV) X-ray bands, finding 95% upper limits on log (r_1/2_/cm) of 15.33 in both bands. A linear prior yields somewhat larger sizes, particularly in the X-ray bands. For comparison, the gravitational radius, using a black hole mass estimated using the H{beta} line, is log(r_g_/cm)=13.94. We find that the accretion disk is probably close to face-on, with cos(i)=1.0 being four times more likely than cos(i)=0.5. We also find probability distributions for the mean mass of the stars in the foreground lensing galaxy, the direction of the transverse peculiar velocity of the lens, and the position angle of the projected accretion disk's major axis (if not face-on).
- ID:
- ivo://CDS.VizieR/J/AJ/154/210
- Title:
- 2015 high-cadence Spitzer microlensing events
- Short Name:
- J/AJ/154/210
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyze an ensemble of microlensing events from the 2015 Spitzer microlensing campaign, all of which were densely monitored by ground-based high-cadence survey teams. The simultaneous observations from Spitzer and the ground yield measurements of the microlensing parallax vector {pi}_E_, from which compact constraints on the microlens properties are derived, including ~<25% uncertainties on the lens mass and distance. With the current sample, we demonstrate that the majority of microlenses are indeed in the mass range of M dwarfs. The planet sensitivities of all 41 events in the sample are calculated, from which we provide constraints on the planet distribution function. In particular, assuming a planet distribution function that is uniform in log q, where q is the planet-to-star mass ratio, we find a 95% upper limit on the fraction of stars that host typical microlensing planets of 49%, which is consistent with previous studies. Based on this planet-free sample, we develop the methodology to statistically study the Galactic distribution of planets using microlensing parallax measurements. Under the assumption that the planet distributions are the same in the bulge as in the disk, we predict that ~1/3 of all planet detections from the microlensing campaigns with Spitzer should be in the bulge. This prediction will be tested with a much larger sample, and deviations from it can be used to constrain the abundance of planets in the bulge relative to the disk.
- ID:
- ivo://CDS.VizieR/J/ApJ/862/156
- Title:
- High-z galaxy candidates in the HFF cluster fields
- Short Name:
- J/ApJ/862/156
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Acting as powerful gravitational lenses, the strong lensing galaxy clusters of the deep Hubble Frontier Fields (HFF) program permit access to lower-luminosity galaxies lying at higher redshifts than hitherto possible. We analyzed the HFF to measure the volume density of Lyman-break galaxies at z>4.75 by identifying a complete and reliable sample up to z~10. A marked deficit of such galaxies was uncovered in the highly magnified regions of the clusters relative to their outskirts, implying that the magnification of the sky area dominates over additional faint galaxies magnified above the flux limit. This negative magnification bias is consistent with a slow rollover at the faint end of the UV luminosity function and it indicates a preference for Bose-Einstein condensate dark matter with a light boson mass of m_B_~10^-22^eV over standard cold dark matter. We emphasize that measuring the magnification bias requires no correction for multiply-lensed images (with typically three or more images per source), whereas directly reconstructing the luminosity function will lead to an overestimate unless such images can be exhaustively matched up, especially at the faint end that is only accessible in the strongly lensed regions. In addition, we detected a distinctive downward transition in galaxy number density at z>~8, which may be linked to the relatively late reionization reported by Planck. Our results suggests that JWST will likely peer into an "abyss" with essentially no galaxies detected in deep NIR imaging at z>10.
- ID:
- ivo://CDS.VizieR/J/A+A/653/L6
- Title:
- HSC-SSP lens candidates from neural networks
- Short Name:
- J/A+A/653/L6
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We have carried out a systematic search for galaxy-scale strong lenses in multiband imaging from the Hyper Suprime-Cam (HSC) survey. Our automated pipeline, based on realistic strong-lens simulations, deep neural network classification, and visual inspection, is aimed at efficiently selecting systems with wide image separations (Einstein radii ~1.0-3.0"), intermediate redshift lenses (z~0.4-0.7), and bright arcs for galaxy evolution and cosmology. We classified gri images of all 62.5 million galaxies in HSC Wide with i-band Kron radius >0.8" to avoid strict preselections and to prepare for the upcoming era of deep, wide-scale imaging surveys with Euclid and Rubin Observatory. We obtained 206 newly-discovered candidates classified as definite or probable lenses with either spatially-resolved multiple images or extended, distorted arcs. In addition, we found 88 high-quality candidates that were assigned lower confidence in previous HSC searches, and we recovered 173 known systems in the literature. These results demonstrate that, aided by limited human input, deep learning pipelines with false positive rates as low as ~0.01% can be very powerful tools for identifying the rare strong lenses from large catalogs, and can also largely extend the samples found by traditional algorithms. We provide a ranked list of candidates for future spectroscopic confirmation.
- ID:
- ivo://CDS.VizieR/J/MNRAS/444/268
- Title:
- HST Frontier Fields clusters
- Short Name:
- J/MNRAS/444/268
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Extending over three Hubble Space Telescope (HST) cycles, the Hubble Frontier Fields (HFF) initiative constitutes the largest commitment ever of HST time to the exploration of the distant Universe via gravitational lensing by massive galaxy clusters. Here, we present models of the mass distribution in the six HFF cluster lenses, derived from a joint strong- and weak-lensing analysis anchored by a total of 88 multiple-image systems identified in existing HST data. The resulting maps of the projected mass distribution and of the gravitational magnification effectively calibrate the HFF clusters as gravitational telescopes. Allowing the computation of search areas in the source plane, these maps are provided to the community to facilitate the exploitation of forthcoming HFF data for quantitative studies of the gravitationally lensed population of background galaxies. Our models of the gravitational magnification afforded by the HFF clusters allow us to quantify the lensing-induced boost in sensitivity over blank-field observations and predict that galaxies at z>10 and as faint as m(AB)=32 will be detectable, up to 2mag fainter than the limit of the Hubble Ultra Deep Field.
- ID:
- ivo://CDS.VizieR/J/ApJ/801/44
- Title:
- HST lensing analysis of the CLASH sample
- Short Name:
- J/ApJ/801/44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from a comprehensive lensing analysis in Hubble Space Telescope (HST) data of the complete Cluster Lensing And Supernova survey with Hubble cluster sample (CLASH). We identify previously undiscovered multiple images, allowing improved or first constraints on the cluster inner mass distributions and profiles. We combine these strong lensing constraints with weak lensing shape measurements within the HST field of view (FOV) to jointly constrain the mass distributions. The analysis is performed in two different common parameterizations (one adopts light-traces-mass (LTM) for both galaxies and dark matter while the other adopts an analytical, elliptical Navarro-Frenk-White (NFW) form for the dark matter) to provide a better assessment of the underlying systematics--which is most important for deep, cluster-lensing surveys, especially when studying magnified high-redshift objects. We find that the typical (median), relative systematic differences throughout the central FOV are ~40% in the (dimensionless) mass density, {kappa}, and ~20% in the magnification, {mu}. We show maps of these differences for each cluster, as well as the mass distributions, critical curves, and two-dimensional (2D)-integrated mass profiles. For the Einstein radii (z_s_=2) we find that all typically agree within 10% between the two models, and Einstein masses agree, typically, within ~15%. At larger radii, the total projected, 2D-integrated mass profiles of the two models, within r~2', differ by ~30%. Stacking the surface-density profiles of the sample from the two methods together, we obtain an average slope of dlog({Sigma})/dlog(r)~-0.64+/-0.1, in the radial range [5350]kpc. Last, we also characterize the behavior of the average magnification, surface density, and shear differences between the two models as a function of both the radius from the center and the best-fit values of these quantities.
- ID:
- ivo://CDS.VizieR/J/ApJ/900/183
- Title:
- HST NIR grism sp. of strong-lensing galaxy clusters
- Short Name:
- J/ApJ/900/183
- Date:
- 15 Feb 2022 11:31:32
- Publisher:
- CDS
- Description:
- We present the hitherto largest sample of gas-phase metallicity radial gradients measured at sub-kpc resolution in star-forming galaxies in the redshift range of 1.2<z<=2.3. These measurements are enabled by the synergy of slitless spectroscopy from the Hubble Space Telescope near-infrared channels and the lensing magnification from foreground galaxy clusters. Our sample consists of 76 galaxies with stellar mass ranging from 10^7^ to 10^10^M_{sun}, an instantaneous star formation rate in the range of [1,100]M_{sun}_/yr, and global metallicity [1/12,2] of solar. At a 2{sigma} confidence level, 15/76 galaxies in our sample show negative radial gradients, whereas 7/76 show inverted gradients. Combining ours and all other metallicity gradients obtained at a similar resolution currently available in the literature, we measure a negative mass dependence of {Delta}log(O/H)/{Delta}r[dex/kpc]=(-0.020+/-0.007)+(-0.016+/-0.008) log(M_*_/10^9.4^M_{sun}_), with the intrinsic scatter being {sigma}=0.060+/-0.006 over 4 orders of magnitude in stellar mass. Our result is consistent with strong feedback, not secular processes, being the primary governor of the chemostructural evolution of star-forming galaxies during the disk mass assembly at cosmic noon. We also find that the intrinsic scatter of metallicity gradients increases with decreasing stellar mass and increasing specific star formation rate. This increase in the intrinsic scatter is likely caused by the combined effect of cold-mode gas accretion and merger-induced starbursts, with the latter more predominant in the dwarf mass regime of M_*_<~10^9^M_{sun}_.
- ID:
- ivo://CDS.VizieR/J/MNRAS/330/1
- Title:
- HST observations of Extremely Red Objects
- Short Name:
- J/MNRAS/330/1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a survey for extremely red objects (EROs) undertaken in the fields of 10 massive galaxy cluster lenses at z~0.2, combining sensitive, high-resolution Hubble Space Telescope imaging with deep, half-arcsecond K-band imaging from UKIRT. We detect 60 EROs with (R-K)>=5.3, of which 26 have (R-K)>=6.0 in a total image-plane survey area of 49arcmin2 down to K=20.6, including one multiply imaged ERO.