- ID:
- ivo://CDS.VizieR/J/A+A/653/A134
- Title:
- AT 2018bwo light curves
- Short Name:
- J/A+A/653/A134
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Luminous red novae (LRNe) are astrophysical transients associated with the partial ejection of a binary system's common envelope (CE) shortly before its merger. Here we present the results of our photometric and spectroscopic follow-up campaign of AT 2018bwo (DLT 18x), a LRN discovered in NGC 45, and investigate its progenitor system using binary stellar-evolution models. The transient reached a peak magnitude of M_r_=-10.97+/-0.11 and maintained this brightness during its optical plateau of t_p_=41+/-5d ays. During this phase, it showed a rather stable photospheric temperature of ~3300K and a luminosity of ~10^40^erg/s. Although the luminosity and duration of AT 2018bwo is comparable to the LRNe V838 Mon and M31-2015LRN, its photosphere at early times appears larger and cooler, likely due to an extended mass-loss episode before the merger. Toward the end of the plateau, optical spectra showed a reddened continuum with strong molecular absorption bands. The IR spectrum at +103 days after discovery was comparable to that of an M8.5 II type star, analogous to an extended AGB star. The reprocessed emission by the cooling dust was also detected in the mid-infrared bands ~1.5 years after the outburst. Archival Spitzer and Hubble Space Telescope data taken 10-14yrs before the transient event suggest a progenitor star with T_prog_~6500K, R_prog_~100R_{sun}_, and L_prog_=2x10^4^L_{sun}_, and an upper limit for optically thin warm (1000K) dust mass of M_d_<10^-6^M_{sun}_. Using stellar binary-evolution models, we determined the properties of binary systems consistent with the progenitor parameter space. For AT 2018bwo, we infer a primary mass of 12-16M_{sun}_, which is 9-45% larger than the ~11M_{sun}_ obtained using single-star evolution models. The system, consistent with a yellow-supergiant primary, was likely in a stable mass-transfer regime with -2.4 <= log (M_dot/Msun /yr) <= -1.2 a decade before the main instability occurred. During the dynamical merger, the system would have ejected 0.15-0.5M_{sun}_ with a velocity of ~500km/s.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/647/A93
- Title:
- AT 2020hat and AT 2020kog light curves
- Short Name:
- J/A+A/647/A93
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of our monitoring campaigns of the luminous red novae (LRNe) AT 2020hat in NGC 5068 and AT 2020kog in NGC 6106. The two objects were imaged (and detected) before their discovery by routine survey operations. They show a general trend of slow luminosity rise lasting at least a few months. The subsequent major LRN outbursts were extensively followed in photometry and spectroscopy. The light curves present an initial short-duration peak, followed by a redder plateau phase. AT 2020kog is a moderately luminous event peaking at ~7x10^40^erg/s, while AT 2020hat is almost one order of magnitude fainter than AT 2020kog, although it is still more luminous than V838 Mon. In analogy with other LRNe, the spectra of AT 2020kog change significantly with time. They resemble those of type IIn supernovae at early phases, then they become similar to those of K-type stars during the plateau, and to M-type stars at very late phases. In contrast, AT 2020hat already shows a redder continuum at early epochs, and its spectrum shows the late appearance of molecular bands. A moderate-resolution spectrum of AT 2020hat taken at +37d after maximum shows a forest of narrow P Cygni lines of metals with velocities of 180 km/s, along with an Halpha emission with a full-width at half-maximum velocity of 250km/s. For AT 2020hat, a robust constraint on its quiescent progenitor is provided by archival images of the Hubble Space Telescope. The progenitor is clearly detected as a mid-K type star, with an absolute magnitude of M_F606W=-3.33+/-0.09mag and a colour of F606W-F814W=1.14+/-0.05mag, which are inconsistent with the expectations from a massive star that could later produce a core-collapse supernova. Although quite peculiar, the two objects nicely match the progenitor versus light curve absolute magnitude correlations discussed in the literature.
- ID:
- ivo://CDS.VizieR/J/A+A/632/L6
- Title:
- AT 2018hso light curves and spectra
- Short Name:
- J/A+A/632/L6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The absolute magnitudes of luminous red novae (LRNe) are intermediate between those of novae and supernovae (SNe), and show a relatively homogeneous spectro-photometric evolution. Although they were thought to derive from core instabilities in single stars, there is growing support for the idea that they are triggered by binary interaction that possibly ends with the merging of the two stars. AT 2018hso is a new transient showing transitional properties between those of LRNe and the class of intermediate-luminosity red transients (ILRTs) similar to SN 2008S. Through the detailed analysis of the observed parameters, our study support that it actually belongs to the LRN class and was likely produced by the coalescence of two massive stars. We obtained ten months of optical and near-infrared photometric monitoring, and 11 epochs of low-resolution optical spectroscopy of AT 2018hso. We compared its observed properties with those of other ILRTs and LRNe. We also inspected the archival Hubble Space Telescope (HST) images obtained about 15 years ago to constrain the progenitor properties. The light curves of AT 2018hso show a first sharp peak (reddening-corrected M_r_=13.93mag), followed by a broader and shallower second peak that resembles a plateau in the optical bands. The spectra dramatically change with time. Early-time spectra show prominent Balmer emission lines and a weak [CaII] doublet, which is usually observed in ILRTs. However, the strong decrease in the continuum temperature, the appearance of narrow metal absorption lines, the great change in the H{alpha} strength and profile, and the emergence of molecular bands support an LRN classification. The possible detection of a M_I_~8mag source at the position of AT 2018hso in HST archive images is consistent with expectations for a pre-merger massive binary, similar to the precursor of the 2015 LRN in M101. We provide reasonable arguments to support an LRN classification for AT 2018hso. This study reveals growing heterogeneity in the observables of LRNe than has been thought previously, which is a challenge for distinguishing between LRNe and ILRTs. This suggests that the entire evolution of gap transients needs to be monitored to avoid misclassifications.
- ID:
- ivo://CDS.VizieR/J/AJ/135/1276
- Title:
- ATLAS radio observations of ELAIS-S1
- Short Name:
- J/AJ/135/1276
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have conducted sensitive (1{sigma}<30uJy) 1.4GHz radio observations with the Australia Telescope Compact Array of a field largely coincident with infrared observations of the Spitzer Wide-Area Extragalactic Survey (SWIRE, 2003PASP..115..897L). The field is centered on the European Large Area ISO Survey S1 region and has a total area of 3.9{deg}. We describe the observations and calibration, source extraction, and cross-matching to infrared sources. Two catalogs are presented: one of the radio components found in the image and another of radio sources with counterparts in the infrared and extracted from the literature. 1366 radio components were grouped into 1276 sources, 1183 of which were matched to infrared sources. We discover 31 radio sources with no infrared counterpart at all, adding to the class of Infrared-Faint Radio Sources.
- ID:
- ivo://CDS.VizieR/J/ApJ/805/57
- Title:
- Atmosphere parameters model-derived for PMS & BDs
- Short Name:
- J/ApJ/805/57
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We test state-of-the-art model atmospheres for young very-low-mass stars and brown dwarfs in the infrared, by comparing the predicted synthetic photometry over 1.2-24{mu}m to the observed photometry of M-type spectral templates in star-forming regions. We find that (1) in both early and late young M types, the model atmospheres imply effective temperatures (Teff) several hundred Kelvin lower than predicted by the standard pre-main sequence (PMS) spectral type-Teff conversion scale (based on theoretical evolutionary models). It is only in the mid-M types that the two temperature estimates agree. (2) The Teff discrepancy in the early M types (corresponding to stellar masses >~0.4M_{sun}_ at ages of a few Myr) probably arises from remaining uncertainties in the treatment of atmospheric convection within the atmospheric models, whereas in the late M types it is likely due to an underestimation of dust opacity. (3) The empirical and model-atmosphere J-band bolometric corrections are both roughly flat, and similar to each other, over the M-type Teff range. Thus the model atmospheres yield reasonably accurate bolometric luminosities (Lbol), but lead to underestimations of mass and age relative to evolutionary expectations (especially in the late M types) due to lower Teff. We demonstrate this for a large sample of young Cha I and Taurus sources. (4) The trends in the atmospheric model J-K_s_ colors, and their deviations from the data, are similar at PMS and main sequence ages, suggesting that the model dust opacity errors we postulate here for young ages also apply at field ages.
- ID:
- ivo://CDS.VizieR/J/ApJ/764/133
- Title:
- Auriga-California giant molecular cloud
- Short Name:
- J/ApJ/764/133
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have mapped the Auriga/California molecular cloud with the Herschel PACS and SPIRE cameras and the Bolocam 1.1mm camera on the Caltech Submillimeter Observatory with the eventual goal of quantifying the star formation and cloud structure in this giant molecular cloud (GMC) that is comparable in size and mass to the Orion GMC, but which appears to be forming far fewer stars. We have tabulated 60 compact 70/160 {mu}m sources that are likely pre-main-sequence objects and correlated those with Spitzer and WISE mid-IR sources. At 1.1 mm, we find 18 cold, compact sources and discuss their properties. The most important result from this part of our study is that we find a modest number of additional compact young objects beyond those identified at shorter wavelengths with Spitzer.
- ID:
- ivo://CDS.VizieR/J/AJ/153/107
- Title:
- Australian Dark Energy Survey (OzDES) quasar catalog
- Short Name:
- J/AJ/153/107
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a study of quasar selection using the supernova fields of the Dark Energy Survey (DES). We used a quasar catalog from an overlapping portion of the SDSS Stripe 82 region to quantify the completeness and efficiency of selection methods involving color, probabilistic modeling, variability, and combinations of color/probabilistic modeling with variability. In all cases, we considered only objects that appear as point sources in the DES images. We examine color selection methods based on the Wide-field Infrared Survey Explorer (WISE) (Wright et al. 2010AJ....140.1868W) mid-IR W1-W2 color, a mixture of WISE and DES colors (g-i and i-W1), and a mixture of Vista Hemisphere Survey (McMahon et al. 2013Msngr.154...35M) and DES colors (g-i and i-K). For probabilistic quasar selection, we used XDQSO, an algorithm that employs an empirical multi-wavelength flux model of quasars to assign quasar probabilities. Our variability selection uses the multi-band {chi}^2^-probability that sources are constant in the DES Year 1 griz-band light curves. The completeness and efficiency are calculated relative to an underlying sample of point sources that are detected in the required selection bands and pass our data quality and photometric error cuts. We conduct our analyses at two magnitude limits, i<19.8 mag and i<22 mag. For the subset of sources with W1 and W2 detections, the W1-W2 color or XDQSOz method combined with variability gives the highest completenesses of >85% for both i-band magnitude limits and efficiencies of >80% to the bright limit and >60% to the faint limit; however, the giW1 and giW1+variability methods give the highest quasar surface densities. The XDQSOz method and combinations of W1W2/giW1/XDQSOz with variability are among the better selection methods when both high completeness and high efficiency are desired. We also present the OzDES Quasar Catalog of 1263 spectroscopically confirmed quasars from three years of OzDES observation in the 30 deg^2^ of the DES supernova fields. The catalog includes quasars with redshifts up to z~4 and brighter than i=22 mag, although the catalog is not complete up to this magnitude limit.
- ID:
- ivo://CDS.VizieR/J/A+A/536/A27
- Title:
- AX Per UBVRI photometry
- Short Name:
- J/A+A/536/A27
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- AX Per is an eclipsing symbiotic binary. During active phases, deep narrow minima are observed in its light curve, and the ionization structure in the binary changes significantly. From ~2007.5, AX Per entered a new active phase. We aim to derive the ionization structure in the binary and its changes during the recent active phase. We used optical high- and low-resolution spectroscopy and UBVRcIc photometry. We modeled the SED in the optical and broad wings of the H alpha line profile during the 2007-10 higher level of the AX Per activity. After 10 orbital cycles (~18.6 years), we again measured the eclipse of the hot component by its giant companion in the light curve. We derived a radius of 27+/-2R_{sun}_ for the eclipsed object and 115+/-2R_{sun}_ for the eclipsing cool giant. The new active phase was connected with a significant enhancement of the hot star wind. From quiescence to activity, the mass-loss rate increased from ~9E-8 to ~3E-6M_{sun}_/yr, respectively. The wind causes the emission of the He++ zone, located in the vicinity of the hot star, and also is the reason for the fraction of the [OIII] zone at farther distances. Simultaneously, we identified a variable optically thick warm (T_eff_~6000K) source that contributes markedly to the composite spectrum. The source was located at the hot star's equator and has the form of a flared disk, whose outer rim simulates the warm photosphere. The formation of the neutral disk-like zone around the accretor during the active phase was connected with its enhanced wind. It is probable that this connection represents a common origin of the warm pseudophotospheres that are indicated during the active phases of symbiotic stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/798/73
- Title:
- BANYAN All-Sky Survey (BASS) catalog. V. Nearby YMGs
- Short Name:
- J/ApJ/798/73
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the BANYAN All-Sky Survey (BASS) catalog, consisting of 228 new late-type (M4-L6) candidate members of nearby young moving groups (YMGs) with an expected false-positive rate of ~13%. This sample includes 79 new candidate young brown dwarfs and 22 planetary-mass objects. These candidates were identified through the first systematic all-sky survey for late-type low-mass stars and brown dwarfs in YMGs. We cross-matched the Two Micron All Sky Survey and AllWISE catalogs outside of the galactic plane to build a sample of 98970 potential >=M5 dwarfs in the solar neighborhood and calculated their proper motions with typical precisions of 5-15mas/yr. We selected highly probable candidate members of several YMGs from this sample using the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II, see Gagne+, 2014, J/ApJ/783/121). We used the most probable statistical distances inferred from BANYAN II to estimate the spectral type and mass of these candidate YMG members. We used this unique sample to show tentative signs of mass segregation in the AB Doradus moving group and the Tucana-Horologium and Columba associations. The BASS sample has already been successful in identifying several new young brown dwarfs in earlier publications, and will be of great interest in studying the initial mass function of YMGs and for the search of exoplanets by direct imaging; the input sample of potential close-by >=M5 dwarfs will be useful to study the kinematics of low-mass stars and brown dwarfs and search for new proper motion pairs.
- ID:
- ivo://CDS.VizieR/J/ApJ/788/81
- Title:
- BANYAN III. RVel and rotation of low-mass stars
- Short Name:
- J/ApJ/788/81
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Based on high-resolution spectra obtained with PHOENIX at Gemini South, CRIRES at VLT-UT1, and ESPaDOnS at the Canada-France-Hawaii Telescope, we present new measurements of the radial and projected rotational velocities of 219 low-mass stars. The target likely membership was initially established using the Bayesian analysis tool recently presented in Malo et al. (Paper I: 2013, J/ApJ/762/88), taking into account only the position, proper motion, and photometry of the stars to assess their membership probability. In the present study, we include radial velocity as an additional input to our analysis, and in doing so we confirm the high membership probability for 130 candidates: 27 in {beta} Pictoris, 22 in Tucana-Horologium, 25 in Columba, 7 in Carina, 18 in Argus and 18 in AB Doradus, and 13 with an ambiguous membership. Our analysis also confirms the membership of 57 stars proposed in the literature. A subsample of 16 candidates was observed at 3 or more epochs, allowing us to discover 6 new spectroscopic binaries. The fraction of binaries in our sample is 25%, consistent with values in the literature. Of the stars in our sample, 20% show projected rotational velocities (vsin i) higher than 30 km/s and therefore are considered as fast rotators. A parallax and other youth indicators are still needed to fully confirm the 130 highly probable candidates identified here as new bona fide members. Finally, based on the X-ray emission of bona fide and highly probable group members, we show that for low-mass stars in the 12-120Myr age range, the X-ray luminosity is an excellent indicator of youth and better than the more traditionally used R_X_parameter, the ratio of X-ray to bolometric luminosity.