- ID:
- ivo://CDS.VizieR/J/A+A/623/A162
- Title:
- Spectroscopy of CH2(CN)2 and CNCH2CN
- Short Name:
- J/A+A/623/A162
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Nitriles constitute almost 20% of the molecules observed in the interstellar medium, whereas only one dinitrile and one isocyanonitrile compound have been detected up to now. The lack of detections of such compounds may be partially explained by the lack of accurate spectroscopic data on their rotational spectra. Two small seven-atom dinitriles, malononitrile NCCH_2_CN and isocyanoacetonitrile NCCH_2_NC, were chosen as target species for this study. For malononitrile the goal of the study is to systematize all the previous measurements, and to extend the measurements to the sub-millimeter wavelength range. The spectrum of isocyanoacetonitrile has not been studied before. The rotational spectra of the two molecules was measured in the frequency range 150-660GHz using the Lille fast-scan spectrometer. The spectroscopic study was supported by high-level theoretical calculations on the structure of these molecules and their harmonic force field. Accurate frequency predictions for malononitrile and isocyanoacetonitrile were calculated on the basis of the analysis of their rotational spectra. The influence of the spin statistics on the intensities of the lines of malononitrile was taken into account. The provided line lists and sets of molecular parameters meet the needs of astrophysical searches for the two molecules.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/149/79
- Title:
- Spectroscopy of 299 galaxies from NewHa survey
- Short Name:
- J/AJ/149/79
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using a sample of 299 H{alpha}-selected galaxies at z~~0.8, we study the relationship between galaxy stellar mass, gas-phase metallicity, and star formation rate (SFR), and compare to previous results. We use deep optical spectra obtained with the IMACS spectrograph at the Magellan telescope to measure strong oxygen lines. We combine these spectra and metallicities with (1) rest-frame UV-to-optical imaging, which allows us to determine stellar masses and dust attenuation corrections, and (2) H{alpha} narrowband imaging, which provides a robust measurement of the instantaneous SFR. Our sample spans stellar masses of ~10^9^-6x10^11^M_{sun}_, SFRs of 0.4-270M_{sun}_/yr, and metal abundances of 12+log(O/H)~~8.3-9.1(~~0.4-2.6Z_{sun}_). The correlations that we find between the H{alpha}-based SFR and stellar mass (i.e., the star-forming "main sequence") and between the stellar mass and metallicity are both consistent with previous z~1 studies of star-forming galaxies. We then study the relationship between the three properties using various plane-fitting techniques and a curve-fitting projection. In all cases, we exclude strong dependence of the M_{star}_-Z relation on SFR, but are unable to distinguish between moderate and no dependence. Our results are consistent with previous mass-metallicity-SFR studies. We check whether data set limitations may obscure a strong dependence on the SFR by using mock samples drawn from the Sloan Digital Sky Survey. These experiments reveal that the adopted signal-to-noise ratio cuts may have a significant effect on the measured dependence. Further work is needed to investigate these results, and to test whether a "fundamental metallicity relation" or a "fundamental plane" describes star-forming galaxies across cosmic time.
- ID:
- ivo://CDS.VizieR/J/A+A/578/A53
- Title:
- Spectroscopy of Herschel Dwarf Galaxy Survey
- Short Name:
- J/A+A/578/A53
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Herschel PACS spectroscopic observations of the [CII] 157um, [OI] 63 and 145um, [OIII] 88um, [NII] 122 and 205um, and [NIII] 57um fine-structure cooling lines in a sample of 48 low-metallicity star-forming galaxies of the guaranteed time key program Dwarf Galaxy Survey. We correlate PACS line ratios and line-to-LTIR ratios with LTIR, LTIR/LB, metallicity, and FIR color, and interpret the observed trends in terms of ISM conditions and phase filling factors with Cloudy radiative transfer models. We find that the ISM of low-metallicity dwarf galaxies has a more porous structure than that of metal-rich galaxies. The radiation fields are harder and the the ionized gas/PDR filling factor is larger in the dwarfs.
- ID:
- ivo://CDS.VizieR/J/AJ/130/1707
- Title:
- Spectroscopy of the LV2 proplyd in Orion
- Short Name:
- J/AJ/130/1707
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present high spatial resolution spectroscopic observations of the proplyd 167-317 (LV2) near the Trapezium cluster in the Orion Nebula, obtained during the system verification run of the Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (IFU) at the Gemini South Observatory. We have detected 38 forbidden and permitted emission lines associated with the proplyd and its redshifted jet.
- ID:
- ivo://CDS.VizieR/J/A+A/538/A119
- Title:
- Spectrum of ^18^O-methyl formate (HCO^18^OCH_3_)
- Short Name:
- J/A+A/538/A119
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Astronomical survey of interstellar molecular clouds needs a previous analysis of the spectra in the microwave and sub-mm energy range of organic molecules in order to be able to identify them. Very accurate spectroscopic constants are obtained in a comprehensive laboratory analysis of rotational spectra. These constants can be used to predict with very high precision the frequencies of transitions that have not been measured in the laboratory. In this work, an experimental study and its theoretical analysis is presented for two ^18^O-methyl formate isotopologues in order to detect for the first time both isotopologues in Orion KL. The experimental spectra of both isotopologues of methyl formate have been recorded in the microwave and sub-mm energy range from 1 to 660GHz. Both spectra have been analysed by using the Rho-Axis Method (RAM) which takes into account the CH3 internal rotation. Spectroscopic constants of both ^18^O-methyl formate have been obtained with high accuracy. Thousands of transitions were assigned and others predicted, which allowed us to detect both species in the IRAM 30m line survey of Orion KL for the first time in the space.
- ID:
- ivo://CDS.VizieR/J/A+A/605/A76
- Title:
- Spectrum of Orion KL between 41.5 and 50GHz
- Short Name:
- J/A+A/605/A76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We resent a sensitive spectral survey of Orion KL in Q-band (7mm), made with one of the 34m antennas of the Madrid Deep Space Communications Complex in Robledo de Chavela, Spain.
- ID:
- ivo://CDS.VizieR/J/AJ/133/1560
- Title:
- Spitzer c2d small clouds and cores
- Short Name:
- J/AJ/133/1560
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a submillimeter survey of 53 low-mass dense cores with the Submillimeter High Angular Resolution Camera II (SHARC-II). The survey is a follow-up project to the Spitzer Legacy Program "From Molecular Cores to Planet-Forming Disks," with the purpose of creating a complete data set of nearby low-mass dense cores from the infrared to the millimeter. We present maps of 52 cores at 350um and three cores at 450um, two of which were observed at both wavelengths. Of these 52 cores, 41 were detected by SHARC-II; 32 contained one submillimeter source, while 9 contained multiple sources. For each submillimeter source detected, we report various source properties including source position, fluxes in various apertures, size, aspect ratio, and position angle.
- ID:
- ivo://CDS.VizieR/J/MNRAS/438/426
- Title:
- Spitzer interstellar bubbles
- Short Name:
- J/MNRAS/438/426
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The expansion of interstellar bubbles is suggested to be an important mechanism of triggering material accumulation and star formation. In this work, we investigate the gaseous environment of a large sample of interstellar bubbles identified by the Spitzer space telescope, aiming to explore the possible evidence of triggered gas accumulation and star formation in a statistical sense. By cross-matching 6124 Spitzer interstellar bubbles from the Milky Way Project (MWP) and more than 2500 Galactic HII regions collected by us, we obtain the velocity information for 818 MWP bubbles. To study the gaseous environment of the interstellar bubbles and get rid of the projection effect as much as possible, we constrain the velocity difference between the bubbles and the ^13^CO(1-0) emission extracted from the Galactic Ring Survey (GRS). Three methods: the mean azimuthally averaged radial profile of ^13^CO emission, the surface number density of molecular clumps and the angular cross-correlation function of MWP bubbles and the GRS molecular clumps are adopted. Significant over density of molecular gas is found to be close to the bubble rims. 60 percent of the studied bubbles were found to have associated molecular clumps. By comparing the clump-associated and the clump-unassociated MWP interstellar bubbles, we reveal that the bubbles in associations tend to be larger and thicker in physical sizes. From the different properties shown by the bubble-associated and bubble-unassociated clumps, we speculate that some of the bubble-associated clumps result from the expansion of bubbles. The fraction of the molecular clumps associated with the MWP bubbles is estimated to be about 20 percent after considering the projection effect. For the bubble-clump complexes, we found that the bubbles in the complexes with associated massive young stellar object(s) (MYSO(s)) have larger physical sizes, hence the complexes tend to be older. We propose that an evolutionary sequence might exist between the relatively younger MYSO-unassociated bubble-clump complexes and the MYSO-associated complexes.
- ID:
- ivo://CDS.VizieR/J/ApJ/767/147
- Title:
- Spitzer-IRAC photometry of jets in Vela-D
- Short Name:
- J/ApJ/767/147
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a survey of H_2_ jets from young protostars in the Vela-D molecular cloud (VMR-D), based on Spitzer-IRAC data between 3.6 {mu}m and 8.0 {mu}m. Our search has led to the identification of 15 jets (two new discoveries) and about 70 well-aligned knots within 1.2 deg^2^. We compare the Infrared Array Camera (IRAC) maps with observations of the H_2_ 1-0 S(1) line at 2.12 {mu}m, with a Spitzer-MIPS map at 24 {mu}m and 70 {mu}m, and with a map of the dust continuum emission at 1.2 mm. From such a comparison, we find a tight association between molecular jets and dust peaks. The jet candidate exciting sources have been searched for in the published catalog of the young stellar objects of VMR-D. In particular, we searched for all the sources of Class II or (preferentially) earlier which are located close to the jet center and aligned with it. Furthermore, the association between jet and exciting source was validated by estimating the differential extinction between the jet opposite lobes. We are able to find a best-candidate exciting source in all but two jets, for which two alternative candidates are given. Four exciting sources are not (or very barely) observed at wavelengths shorter than 24 {mu}m, suggesting that they are very young protostars. Three of them are also associated with the most compact jets (projected length<~0.1 pc). The exciting source spectral energy distributions (SEDs) have been constructed and modeled by means of all the available photometric data between 1.2 {mu}m and 1.2 mm. From SEDs fits, we derive the main source parameters, which indicate that most of them are low-mass protostars. A significant correlation is found between the projected jet length and the [24]-[70] color, which is consistent with an evolutionary scenario according to which shorter jets are associated with younger sources. A rough correlation is found between IRAC line cooling and exciting source bolometric luminosity, in agreement with the previous literature. The emerging trend suggests that mass loss and mass accretion are tightly related phenomena and that both decrease with time.
810. Spitzer IRDCs
- ID:
- ivo://CDS.VizieR/J/ApJ/698/324
- Title:
- Spitzer IRDCs
- Short Name:
- J/ApJ/698/324
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have conducted a survey of a sample of infrared-dark clouds (IRDCs) with the Spitzer Space Telescope in order to explore their mass distribution. We present a method for tracing mass using dust absorption against the bright Galactic background at 8um. The IRDCs in this sample are comprised of tens of clumps, ranging in sizes from 0.02 to 0.3pc in diameter and masses from 0.5 to a few 10^3^M_{sun}_, the broadest dynamic range in any clump mass spectrum study to date.