- ID:
- ivo://CDS.VizieR/J/A+A/633/A150
- Title:
- Galactic Faraday sky
- Short Name:
- J/A+A/633/A150
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Galactic Faraday depth sky is a tracer for both the Galactic magnetic field and the thermal electron distribution. It was previously reconstructed from polarimetric measurements of extra-Galactic point sources. Here we improve on these works by using an updated inference algorithm and by taking into account the electron emission measure as traced by free-free emission measured by the Planck survey. In the future the data situation will improve drastically thanks to the next generation Faraday rotation measurements from the SKA and its pathfinders. Anticipating this, a further aim of this paper is to update the map reconstruction method with some of the latest developments in Bayesian imaging. To this end we made use of information field theory, an inference scheme that is particularly powerful in cases of noisy and incomplete data. We demonstrate the validity of the new algorithm by applying it to an existing data compilation. Even though we used exactly the same data set, a number of novel findings are made; for example, a non-parametric reconstruction of an overall amplitude field resembles the free-free emission measure map of the Galaxy. Folding this emission measure map into the analysis provides more detailed predictions. The joint inference enables us to identify regions with deviations from the assumed correlations between the emission measure and Faraday data, thereby pointing us to Galactic structures with distinguishably different physics. We find evidence for an alignment of the magnetic field within the lines of sight along both directions of the Orion arm.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/604/A111
- Title:
- 22GHz image of 3C 273
- Short Name:
- J/A+A/604/A111
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- RadioAstron is a 10m orbiting radio telescope mounted on the Spektr-R satellite, launched in 2011, performing Space Very Long Baseline Interferometry (SVLBI) observations supported by a global ground array of radio telescopes. With an apogee of ~350000km, it is offering for the first time the possibility to perform as-resolution imaging in the cm-band. The RadioAstron Active Galactic Nuclei (AGN) polarization Key Science Project (KSP) aims at exploiting the unprecedented angular resolution provided by RadioAstron to study jet launching/collimation and magnetic-field configuration in AGN jets. The targets of our KSP are some of the most powerful blazars in the sky. We present observations at 22GHz of 3C 273, performed in 2014, designed to reach a maximum baseline of approximately nine Earth diameters. Reaching an angular resolution of 0.3mas, we study a particularly low-activity state of the source, and estimate the nuclear region brightness temperature, comparing with the extreme one detected one year before during the RadioAstron early science period.We also make use of the VLBA-BU-BLAZAR survey data, at 43GHz, to study the kinematics of the jet in a ~1.5-year time window. We find that the nuclear brightness temperature is two orders of magnitude lower than the exceptionally high value detected in 2013 with RadioAstron at the same frequency (1.4x10^13^K, source-frame), and even one order of magnitude lower than the equipartition value. The kinematics analysis at 43 GHz shows that a new component was ejected ~2 months after the 2013 epoch, visible also in our 22GHz map presented here. Consequently this was located upstream of the core during the brightness temperature peak. Fermi-LAT observations for the period 2010-2014 do not show any gamma-ray flare in conjunction with the passage of the new component by the core at 43GHz. These observations confirm that the previously detected extreme brightness temperature in 3C 273, exceeding the inverse Compton limit, is a short-lived phenomenon caused by a temporary departure from equipartition. Thus, the availability of interferometric baselines capable of providing as angular resolution does not systematically imply measured brightness temperatures over the known physical limits for astrophysical sources.
- ID:
- ivo://CDS.VizieR/J/A+A/623/A130
- Title:
- 6.7GHz methanol maser polarization in MSFRs IV
- Short Name:
- J/A+A/623/A130
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Magnetohydrodynamical simulations show that the magnetic field can drive molecular outflows during the formation of massive protostars. The best probe to observationally measure both the morphology and the strength of this magnetic field at scales of 10-100au is maser polarization. Measuring the direction of magnetic fields at milliarcsecond resolution around a sample of massive star forming regions to determine whether there exists a relation between the orientation of the magnetic field and of the outflows. In addition by estimating the magnetic field strength via the Zeeman splitting measurements, the role of magnetic field in the dynamics of the massive star-forming region is investigated. We selected a flux-limited sample of 31 massive star-forming regions to perform a statistical analysis of the magnetic field properties with respect to the molecular outflows characteristics. We report the linearly and circularly polarized emission of 6.7GHz CH_3_OH masers towards seven massive star-forming regions of the total sample with the European VLBI Network. The sources are: G23.44-0.18, G25.83-0.18, G25.71-0.04, G28.31-0.39, G28.83-0.25, G29.96-0.02, and G43.80-0.13. We identified a total of 219 CH_3_OH maser features, 47 and 2 of which showed linearly and circularly polarized emission, respectively. We measured well ordered linear polarization vectors around all the massive young stellar objects and Zeeman splitting towards G25.71-0.04 and G28.83-0.25. Thanks to recent theoretical results, we were able to provide lower limits to the magnetic field strength from our Zeeman splitting measurements. We further confirm (based on ~80% of the total flux-limited sample) that the magnetic field on scales of 10-100 au is preferentially oriented along the outflow axes. The estimated magnetic field strength of |B_||_|>61mG and >21mG towards G25.71-0.04 and G28.83-0.2, respectively, indicates that it dominates the dynamics of the gas in both regions.
- ID:
- ivo://CDS.VizieR/J/ApJ/797/50
- Title:
- Global energetics of solar flares. I.
- Short Name:
- J/ApJ/797/50
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first part of a project on the global energetics of solar flares and coronal mass ejections that includes about 400 M- and X-class flares observed with Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). We calculate the potential (E_p_), the nonpotential (E_np_) or free energies (E_free_=E_np_-E_p_), and the flare-dissipated magnetic energies (E_diss_). We calculate these magnetic parameters using two different NLFFF codes: the COR-NLFFF code uses the line-of-sight magnetic field component B_z_ from HMI to define the potential field, and the two-dimensional (2D) coordinates of automatically detected coronal loops in six coronal wavelengths from AIA to measure the helical twist of coronal loops caused by vertical currents, while the PHOT-NLFFF code extrapolates the photospheric three-dimensional (3D) vector fields. We find agreement between the two codes in the measurement of free energies and dissipated energies within a factor of <~3. The size distributions of magnetic parameters exhibit powerlaw slopes that are approximately consistent with the fractal-diffusive self-organized criticality model. The magnetic parameters exhibit scaling laws for the nonpotential energy, E_np_{propto}E_p_^1.02^, for the free energy, E_free_{propto}E_p_^1.7^ and E_free_{propto}B_{phi}_^1.0^L^1.5^, for the dissipated energy, E_diss_{propto}E_p_^1.6^ and E_diss_{propto}E_free_^0.9^ , and the energy dissipation volume, V{propto}E_diss_^1.2^. The potential energies vary in the range of E_p_=1x10^31^-4x10^33^erg, while the free energy has a ratio of E_free_/E_p_{approx}1%-25%. The Poynting flux amounts to F_flare_{approx}5x10^8^-10^10^erg/cm2/s during flares, which averages to F_AR_{approx}6x10^6^erg/cm2/s during the entire observation period and is comparable with the coronal heating rate requirement in active regions.
- ID:
- ivo://CDS.VizieR/J/ApJ/885/49
- Title:
- Global energetics of solar flares. IX.
- Short Name:
- J/ApJ/885/49
- Date:
- 08 Dec 2021
- Publisher:
- CDS
- Description:
- A more accurate analytical solution of the vertical-current approximation nonlinear force-free field (VCA3-NLFFF) model is presented that includes, besides the radial (Br) and azimuthal (B{phi}) magnetic field components, a poloidal component (B_{theta}_/=0) as well. This new analytical solution is of second-order accuracy in the divergence-freeness condition and of third-order accuracy in the force-freeness condition. We reanalyze the sample of 173 GOES M- and X-class flares observed with the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO). The new code reproduces helically twisted loops with a low winding number below the kink instability consistently, avoiding unstable, highly twisted structures of the Gold-Hoyle flux rope type. The magnetic energies agree within E_VCA3_/E_W_=0.99{+/-}0.21 with the Wiegelmann (W-NLFFF) code. The time evolution of the magnetic field reveals multiple, intermittent energy buildup and releases in most flares, contradicting both the Rosner-Vaiana model (with gradual energy storage in the corona) and the principle of timescale separation ({tau}flare<<{tau}storage) postulated in self-organized criticality models. The mean dissipated flare energy is found to amount to 7%{+/-}3% of the potential energy, or 60%{+/-}26% of the free energy, a result that can be used for predicting flare magnitudes based on the potential field of active regions.
- ID:
- ivo://CDS.VizieR/J/A+A/630/A54
- Title:
- G31.41+0.31 Stokes IQU images
- Short Name:
- J/A+A/630/A54
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Submillimeter Array (SMA) 870um polarization observations of the hot molecular core G31.41+0.31 revealed one of the clearest examples up to date of an hourglass-shaped magnetic field morphology in a high-mass star-forming region. To better establish the role that the magnetic field plays in the collapse of G31.41+0.31, we carried out Atacama Large Millimeter/submillimeter Array (ALMA) observations of the polarized dust continuum emission at 1.3mm with an angular resolution four times higher than that of the previous (sub)millimeter observations to achieve an unprecedented image of the magnetic field morphology. We used ALMA to perform full polarization observations at 233GHz (Band 6). The resulting synthesized beam is 00.28"x00.20" which, at the distance of the source, corresponds to a spatial resolution of 875au. The observations resolve the structure of the magnetic field in G31.41+0.31 and allow us to study the field in detail. The polarized emission in the Main core of G31.41+0.41 is successfully fit with a semi-analytical magnetostatic model of a toroid supported by magnetic fields. The best fit model suggests that the magnetic field is well represented by a poloidal field with a possible contribution of a toroidal component of 10% of the poloidal component, oriented southeast to northwest at ~-44{deg} and with an inclination of ~-45{deg}. The magnetic field is oriented perpendicular to the northeast to southwest velocity gradient detected in this core on scales from 10^3^-10^4^au. This supports the hypothesis that the velocity gradient is due to rotation of the core and suggests that such a rotation has little effect on the magnetic field. The strength of the magnetic field estimated in the central region of the core with the Davis-Chandrasekhar-Fermi method is ~8-13mG and implies that the mass-to-flux ratio in this region is slightly supercritical ({lambda}=1.4-2.2). The magnetic field in G31.41+0.31 maintains an hourglass-shaped morphology down to scales of <1000au. Despite the magnetic field being important in G31.41+0.31, it is not enough to prevent fragmentation and collapse of the core, as demonstrated by the presence of at least four sources embedded in the center of the core.
- ID:
- ivo://CDS.VizieR/J/A+A/458/569
- Title:
- H{alpha} equivalent widths of 36 Lyn (HD 79158)
- Short Name:
- J/A+A/458/569
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper reports the photospheric, magnetic and circumstellar gas characteristics of the magnetic B8p star 36 Lyncis (HD 79158). Using archival data and new polarised and unpolarised high-resolution spectra, we redetermine the basic physical properties, the rotational period and the geometry of the magnetic field, and the photospheric abundances of various elements.
- ID:
- ivo://CDS.VizieR/J/MNRAS/426/2208
- Title:
- H{alpha} variations of O9 subgiant HD57682
- Short Name:
- J/MNRAS/426/2208
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The O9IV star HD 57682, discovered to be magnetic within the context of the Magnetism in Massive Stars (MiMeS) survey in 2009, is one of only eight convincingly detected magnetic O-type stars. Among this select group, it stands out due to its sharp-lined photospheric spectrum. Since its discovery, the MiMeS Collaboration has continued to obtain spectroscopic and magnetic observations in order to refine our knowledge of its magnetic field strength and geometry, rotational period and spectral properties and variability. In this paper we report new Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) spectropolarimetric observations of HD 57682, which are combined with previously published ESPaDOnS data and archival H{alpha} spectroscopy. This data set is used to determine the rotational period (63.5708+/-0.0057d), refine the longitudinal magnetic field variation and magnetic geometry (dipole surface field strength of 880+/-50G and magnetic obliquity of 79+/-4{deg} as measured from the magnetic longitudinal field variations, assuming an inclination of 60{deg}) and examine the phase variation of various lines.
- ID:
- ivo://CDS.VizieR/J/A+A/567/A28
- Title:
- HARPSpol magnetic massive stars
- Short Name:
- J/A+A/567/A28
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Magnetism in Massive Stars (MiMeS) project aims at understanding the origin of the magnetic fields in massive stars as well as their impact on stellar internal structure, evolution, and circumstellar environment. One of the objectives of the MiMeS project is to provide stringent observational constraints on the magnetic fields of massive stars; however, identification of magnetic massive stars is challenging, as only a few percent of high-mass stars host strong fields detectable with the current instrumentation. Hence, one of the first objectives of the MiMeS project was to search for magnetic objects among a large sample of massive stars, and to build a sub-sample for in-depth follow-up studies required to test the models and theories of fossil field origins, magnetic wind confinement and magnetospheric properties, and magnetic star evolution. We obtained high-resolution spectropolarimetric observations of a large number of OB stars thanks to three large programs (LP) of observations that have been allocated on the high-resolution spectropolarimeters ESPaDOnS, Narval, and the polarimetric module HARPSpol of the HARPS spectrograph.
- ID:
- ivo://CDS.VizieR/J/ApJ/897/177
- Title:
- 142 high-redshift blazars at the cosmic dawn
- Short Name:
- J/ApJ/897/177
- Date:
- 11 Mar 2022
- Publisher:
- CDS
- Description:
- The uncharted territory of the high-redshift (z>~3) universe holds the key to understanding the evolution of quasars. In an attempt to identify the most extreme members of the quasar population, that is, blazars, we have carried out a multiwavelength study of a large sample of radio-loud quasars beyond z=3. Our sample consists of nine {gamma}-ray-detected blazars and 133 candidate blazars selected based on the flatness of their soft X-ray spectra (0.3-10keV photon index <~1.75), including 15 with Nuclear Spectroscopic Telescope Array (NuSTAR) observations. The application of the likelihood profile stacking technique reveals that the high-redshift blazars are faint {gamma}-ray emitters with steep spectra. The high-redshift blazars host massive black holes (<logM_BH,M{odot}_>>9) and luminous accretion disks (<L_disk_>>10^46^erg/s). Their broadband spectral energy distributions are found to be dominated by high-energy radiation, indicating their jets are among the most luminous ones. Focusing on the sources exhibiting resolved X-ray jets (as observed with the Chandra satellite), we find the bulk Lorentz factor to be larger with respect to other z>3 blazars, indicating faster moving jets. We conclude that the presented list of high-redshift blazars may act as a reservoir for follow-up observations, such as with NuSTAR, to understand the evolution of relativistic jets at the dawn of the universe.