- ID:
- ivo://CDS.VizieR/J/ApJ/907/123
- Title:
- Spin Parity of Spiral Galaxies. III.
- Short Name:
- J/ApJ/907/123
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This is a revised catalog of spiral winding direction of SDSS spiral galaxies published by Shamir (2017PASA...34...11S). Whether the spiral pattern as projected on the sky is S-wise or Z-wise (Shamir called them counter clock wise and clockwise, respectively) can be an unambiguous tool to identify whether the galaxy spin vector is pointing toward or away from us as all the spirals are safely regarded as trailing spirals (Iye et al., 2019ApJ...886..113S). We used Shamir's catalog to analyze the dipole anisotropy in their large-scale structure and found that there exist rather massive duplicated entries and a few other minor errors in the original catalog. In this revised version those duplicated entries are cleaned keeping the judgment of the spiral winding direction due to Shamir (2017PASA...34...11S) except for a several obviously inconsistent cases. These corrections were necessary to make analysis of the large scale distribution of spin vectors of galaxies of the SDSS sample in our paper.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/116/1626
- Title:
- Spiral and lenticular galaxy brightness profiles
- Short Name:
- J/AJ/116/1626
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present one of the largest homogeneous sets of spiral and lenticular galaxy brightness profile decompositions completed to date. The 659 galaxies in our sample have been fitted with a de Vaucouleurs law for the bulge component and an inner-truncated exponential for the disk component. Of the 659 galaxies in the sample, 620 were successfully fitted with the chosen fitting functions. The fits are generally well defined, with more than 90% having rms deviations from the observed profile of less than 0.35mag. We find no correlations of fitting quality, as measured by these rms residuals, with either morphological type or inclination. Similarly, the estimated errors of the fitted coefficients show no significant trends with type or inclination. These decompositions form a useful basis for the study of the light distributions of spiral and lenticular galaxies. The object base is sufficiently large that well-defined samples of galaxies can be selected from it.
3483. Spiral arms Gaia EDR3
- ID:
- ivo://CDS.VizieR/J/A+A/651/A104
- Title:
- Spiral arms Gaia EDR3
- Short Name:
- J/A+A/651/A104
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Using the astrometry and integrated photometry from the Gaia Early Data Release 3 (EDR3), we map the density variations in the distribution of young Upper Main Sequence (UMS) stars, open clusters and classical Cepheids in the Galactic disk within several kiloparsecs of the Sun. Maps of relative over/under-dense regions for UMS stars in the Galactic disk are derived, using both bivariate kernel density estimators and wavelet transformations. The resulting overdensity maps exhibit large-scale arches, that extend in a clumpy but coherent way over the entire sampled volume, indicating the location of the spiral arms segments in the vicinity of the Sun. Peaks in the UMS overdensity are well-matched by the distribution of young and intrinsically bright open clusters. By applying a wavelet transformation to a sample of classical Cepheids, we find that their overdensities possibly extend the spiral arm segments on a larger scale (~10kpc from the Sun). While the resulting map based on the UMS sample is generally consistent with previous models of the Sagittarius-Carina spiral arm, the geometry of the arms in the III quadrant (galactic longitudes 180{deg}<l<270{deg}) differs significantly from many previous models. In particular we find that our maps favour a larger pitch angle for the Perseus arm, and that the Local Arm extends into the III quadrant at least 4kpc past the Sun's position, giving it a total length of at least 8kpc.
3484. Spirals in Virgo. III.
- ID:
- ivo://CDS.VizieR/J/A+AS/110/279
- Title:
- Spirals in Virgo. III.
- Short Name:
- J/A+AS/110/279
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the analysis of the rotation curves of a sample of 32 spiral galaxies derived from the spectroscopic observations of a sample of 47 galaxies.
- ID:
- ivo://CDS.VizieR/J/other/RAA/18.146
- Title:
- Spiral structure of the Milky Way
- Short Name:
- J/other/RAA/18.1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The morphology and kinematics of the spiral structure of the Milky Way are long-standing problems in astrophysics. In this review we firstly summarize various methods with different tracers used to solve this puzzle. The astrometry of Galactic sources is gradually alleviating this difficult situation caused mainly by large distance uncertainties, as we can currently obtain accurate parallaxes (a few {mu}as) and proper motions (~1km/s) by using Very Long Baseline Interferometry (VLBI). On the other hand, the Gaia mission is providing the largest, uniform sample of parallaxes for O-type stars in the entire Milky Way. Based upon the VLBI maser and Gaia O-star parallax measurements, nearby spiral structures of the Perseus, Local, Sagittarius and Scutum Arms are determined in unprecedented detail. Meanwhile, we estimate fundamental Galactic parameters of the distance to the Galactic center, R_0_, to be 8.35+/-0.18kpc, and circular rotation speed at the Sun, {THETA}_0_, to be 240+/-10km/s. We found kinematic differences between O stars and interstellar masers: the O stars, on average, rotate faster, >8km/s than maser-traced high-mass star forming regions.
- ID:
- ivo://CDS.VizieR/J/AJ/151/90
- Title:
- Spitzer and VRIJHK photometry of V582 Mon
- Short Name:
- J/AJ/151/90
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We examine the light and color evolution of the T Tauri binary KH 15D through photometry obtained at wavelengths between 0.55 and 8.0{mu}m. The data were collected with A Novel Dual Imaging CAMera (ANDICAM) on the 1.3m SMARTS telescope at Cerro-Tololo Inter-American Observatory and with InfraRed Array Camera on the Spitzer Space Telescope. We show that the system's circumbinary ring, which acts as a screen that covers and uncovers different portions of the binary orbit as the ring precesses, has reached an orientation where the brighter component (star B) fully or nearly fully emerges during each orbital cycle. The fainter component (star A) remains fully occulted by the screen at all phases. The leading and trailing edges of the screen move across the sky at the same rate of ~15m/s, consistent with expectation for a ring with a radius and width of ~4 au and a precession period of ~6500 years. Light and color variations continue to indicate that the screen is sharp edged and opaque at VRIJH wavelengths. However, we find an increasing transparency of the ring edge at 2.2, 3.6, and 4.5{mu}m. Reddening seen at the beginning of the eclipse that occurred during the CSI 2264 campaign particularly suggests selective extinction by a population of large dust grains. Meanwhile, the gradual bluing observed while star B is setting is indicative of forward scattering effects at the edge of the ring. The spectral energy distribution of the system at its bright phase shows no evidence of infrared excess emission that can be attributed to radiation from the ring or other dust component out to 8{mu}m.
- ID:
- ivo://CDS.VizieR/J/ApJ/796/127
- Title:
- Spitzer h and {chi} Persei candidate members
- Short Name:
- J/ApJ/796/127
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyze very deep Infrared Array Camera and Multiband Imaging Photometer for Spitzer (MIPS) photometry of ~12500 members of the 14 Myr old Double Cluster, h and {chi} Persei, building upon our earlier, shallower Spitzer Cycle 1 studies. Numerous likely members show infrared (IR) excesses at 8 {mu}m and 24 {mu}m, indicative of circumstellar dust. The frequency of stars with 8 {mu}m excess is at least 2% for our entire sample, slightly lower (higher) for B/A stars (later type, lower mass stars). Optical spectroscopy also identifies gas in about 2% of systems, but with no clear trend between the presence of dust and gas. Spectral energy distribution modeling of 18 sources with detections at optical wavelengths through MIPS 24 {mu}m reveals a diverse set of disk evolutionary states, including a high fraction of transitional disks, though similar data for all disk-bearing members would provide constraints. Using Monte Carlo simulations, we combine our results with those for other young clusters to study the global evolution of dust/gas disks. For nominal cluster ages, the e-folding times ({tau}_0_) for the frequency of warm dust and gas are 2.75 Myr and 1.75 Myr, respectively. Assuming a revised set of ages for some clusters, these timescales increase to 5.75 and 3.75 Myr, respectively, implying a significantly longer typical protoplanetary disk lifetime than previously thought. In both cases, the transitional disk duration, averaged over multiple evolutionary pathways, is ~1 Myr. Finally, 24 {mu}m excess frequencies for 4-6 M_{sun}_ stars appear lower than for 1-2.5 M_{sun}_ stars in other 10-30 Myr old clusters.
- ID:
- ivo://CDS.VizieR/J/ApJ/750/125
- Title:
- Spitzer imaging of Cepheus OB3b cluster
- Short Name:
- J/ApJ/750/125
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We map the full extent of a rich massive young cluster in the Cep OB3b association with the Infrared Array Camera and Multi-band Imaging Photometer System instruments aboard the Spitzer Space Telescope and the ACIS instrument aboard the Chandra X-Ray Observatory. At 700 pc, it is revealed to be the second nearest large (>1000 member), young (<5 Myr) cluster known. In contrast to the nearest large cluster, the Orion Nebula Cluster, Cep OB3b is only lightly obscured and is mostly located in a large cavity carved out of the surrounding molecular cloud. Our infrared and X-ray data sets, as well as visible photometry from the literature, are used to take a census of the young stars in Cep OB3b. We find that the young stars within the cluster are concentrated in two sub-clusters; an eastern sub-cluster, near the Cep B molecular clump, and a western sub-cluster, near the Cep F molecular clump. Using our census of young stars, we examine the fraction of young stars with infrared excesses indicative of circumstellar disks. We create a map of the disk fraction throughout the cluster and find that it is spatially variable. Due to these spatial variations, the two sub-clusters exhibit substantially different average disk fractions from each other: 32%+/-4% and 50%+/-6%. We discuss whether the discrepant disk fractions are due to the photodestruction of disks by the high mass members of the cluster or whether they result from differences in the ages of the sub-clusters. We conclude that the discrepant disk fractions are most likely due to differences in the ages.
- ID:
- ivo://CDS.VizieR/J/ApJS/193/13
- Title:
- Spitzer/IRAC sources in the EGS I. SEDs
- Short Name:
- J/ApJS/193/13
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an IRAC 3.6+4.5um selected catalog in the Extended Groth Strip (EGS) containing photometry from the ultraviolet to the far-infrared and stellar parameters derived from the analysis of the multi-wavelength data. In this paper, we describe the method used to build coherent spectral energy distributions (SEDs) for all the sources. In a forthcoming companion paper, we analyze those SEDs to obtain robust estimations of stellar parameters such as photometric redshifts, stellar masses, and star formation rates. The catalog comprises 76936 sources with [3.6]<=23.75mag (85% completeness level of the IRAC survey in the EGS) over 0.48deg^2^. For approximately 16% of this sample, we are able to deconvolve the IRAC data to obtain robust fluxes for the multiple counterparts found in ground-based optical images. Typically, the SEDs of the IRAC sources in our catalog count with more than 15 photometric data points, spanning from the ultraviolet wavelengths probed by GALEX to the far-infrared observed by Spitzer, and going through ground- and space-based optical and near-infrared data taken with 2-8m class telescopes. Approximately 95% and 90% of all IRAC sources are detected in the deepest optical and near-infrared bands. These fractions are reduced to 85% and 70% for S/N>5 detections in each band. Only 10% of the sources in the catalog have optical spectroscopy and redshift estimations. Almost 20% and 2% of the sources are detected by MIPS at 24 and 70um, respectively. We also cross-correlate our catalog with public X-ray and radio catalogs.
- ID:
- ivo://CDS.VizieR/J/ApJ/826/44
- Title:
- Spitzer/IRS obs. of Magellanic carbon stars
- Short Name:
- J/ApJ/826/44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C_2_H_2_ at 7.5{mu}m. The relation between DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries.