- ID:
- ivo://CDS.VizieR/J/ApJ/898/56
- Title:
- UVOT, ZTF gri LCs and spectra of the SN Ia 2019yvq
- Short Name:
- J/ApJ/898/56
- Date:
- 16 Mar 2022 00:53:53
- Publisher:
- CDS
- Description:
- Early observations of Type Ia supernovae (SNe Ia) provide essential clues for understanding the progenitor system that gave rise to the terminal thermonuclear explosion. We present exquisite observations of SN 2019yvq, the second observed SN Ia, after iPTF 14atg, to display an early flash of emission in the ultraviolet (UV) and optical. Our analysis finds that SN 2019yvq was unusual, even when ignoring the initial flash, in that it was moderately underluminous for an SN Ia (M_g_~-18.5mag at peak) yet featured very high absorption velocities (v~15000km/s for SiII{lambda}6355 at peak). We find that many of the observational features of SN 2019yvq, aside from the flash, can be explained if the explosive yield of radioactive 56Ni is relatively low (we measure M_56Ni_=0.31+/-0.05M_{sun}_) and it and other iron-group elements are concentrated in the innermost layers of the ejecta. To explain both the UV/optical flash and peak properties of SN 2019yvq we consider four different models: interaction between the SN ejecta and a nondegenerate companion, extended clumps of ^56^Ni in the outer ejecta, a double-detonation explosion, and the violent merger of two white dwarfs. Each of these models has shortcomings when compared to the observations; it is clear additional tuning is required to better match SN 2019yvq. In closing, we predict that the nebular spectra of SN 2019yvq will feature either H or He emission, if the ejecta collided with a companion, strong [CaII] emission, if it was a double detonation, or narrow [OI] emission, if it was due to a violent merger.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/548/A107
- Title:
- U,V photometry in M2 (NGC 7089)
- Short Name:
- J/A+A/548/A107
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present U, V photometry of the globular cluster M2. Stars within 1' and outside of 4' from the cluster center are excluded from the CMD to reduce blending effects and the field star contamination, respectively. We imposed on all stars the selection limits of CHI<2.0 and -1<SHARP<1 on DAOPHOT II photometric parameters. To select a sample of well-measured stars we have followed the procedure given in Lardo et al. (2012A&A...541A.141L), Sect. 5.1. M2 photometry displays an anomalous branch beyond the red edge of the main body of the RGB. The difference in color between stars belonging to this structure and normal RGB stars is quite large (of the order of 0.2-0.3mag, well above the typical measurement errors) and extends down to the SGB region. There may be a second group of stars that are 0.3mag redder with respect to this sequence and can possibly be more, anomalous RGB stars. The observations were carried out during the nights of 2010 July 15 at the Telescopio Nazionale Galileo (TNG) located in La Palma, Canary Islands (Spain), with he DOLORES camera. The DOLORES camera offers a field of view of 8.6'x8.6' with a 0.252"/pix scale. We obtained images of the cluster in the standard Johnson U and V filters for a total of 540s shifted in 3 single exposures in each filter. The seeing condition were average during (~1.2-1.3") during the observing night.
4363. UV photometry of M15
- ID:
- ivo://CDS.VizieR/J/ApJ/670/379
- Title:
- UV photometry of M15
- Short Name:
- J/ApJ/670/379
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have obtained deep FUV and NUV images of the inner region of the dense globular cluster M15 with the HST ACS. The FUV-NUV color-magnitude diagram shows a well-defined track of horizontal branch stars, as well as a trail of blue stragglers and white dwarfs. The main-sequence turnoff is clearly visible at FUV~22.5mag and FUV-NUV~3mag, and the main-sequence stars form a prominent track that extends at least 2mag below the main-sequence turnoff. As such, this is the deepest FUV-NUV color-magnitude diagram of a globular cluster presented so far. Cataclysmic variable and blue straggler candidates are the most centrally concentrated stellar populations, which might either be an effect of mass segregation or reflect the preferred birthplace in the dense cluster core of such dynamically formed objects. We find 41 FUV sources that exhibit significant variability. We classify the variables based on an analysis of their UV colors and variability properties. We find four previously known RR Lyrae and 13 further RR Lyrae candidates, one known Cepheid and six further candidates, six cataclysmic variable candidates, one known and one probable SX Phoenicis star, and the well-known low-mass X-ray binary AC 211. Our analysis represents the first detection of SX Phoenicis pulsations in the FUV. We find that Cepheids, RR Lyrae stars, and SX Phoenicis exhibit massive variability amplitudes in this wave band (several magnitudes).
- ID:
- ivo://CDS.VizieR/J/A+A/545/A141
- Title:
- UV selected sources in the GOODS-S field
- Short Name:
- J/A+A/545/A141
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Dust attenuation in galaxies is poorly known, especially at high redshift. And yet the amount of dust attenuation is a key parameter to deduce accurate star formation rates from ultraviolet (UV) rest-frame measurements. The wavelength dependence of the dust attenuation is also of fundamental importance to interpret the observed spectral energy distributions (SEDs) and to derive photometric redshifts or physical properties of galaxies. We want to study dust attenuation at UV wavelengths at high redshift, where the UV is redshifted to the observed visible light wavelength range. In particular, we search for a UV bump and related implications for dust attenuation determinations.
- ID:
- ivo://CDS.VizieR/J/A+A/602/A97
- Title:
- UV structure of 11 galaxies with Swift-UVOT
- Short Name:
- J/A+A/602/A97
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- GALEX detected a significant fraction of early-type galaxies, in particular S0s, showing Far-UV bright structures, sometimes involving an entire galaxy out to its outskirts. These features suggest the presence of either recent, ongoing and/or prolonged star formation episodes, shedding new light on the evolution of these systems. We aim at understanding the evolutionary path[s] of these early-type galaxies and the mechanisms at the origin of their UV-bright structures. We investigate with a multi{lambda} approach the link between the inner and the outer galaxy regions of a set of eleven early-type galaxies selected because of their nearly passive stage of evolution in the nuclear region. This paper, second of a series, focuses on the information coming from the comparison between UV features detected by Swift-UVOT, tracing recent star formation, and the galaxy optical structure mapping older stellar populations. We performed a surface photometric study of these early-type galaxies, observed with Swift-UVOT UV filters, W2 2030{AA} {lambda_0}, M2 2231{AA} {lambda_0}, W1 2634{AA} {lambda_0}, and UBV bands. BVRI photometry from other sources in the literature is also used. Our integrated magnitude measurements have been analyzed and compared with corresponding values in the literature. We characterize the overall galaxy structure best fitting the UV and optical luminosity profiles using a single Sersic law. NGC 1366, NGC 1426, NGC 3818, NGC 3962 and NGC 7192 show featureless luminosity profiles. Excluding NGC~1366 which has a clear edge-on disk (n~1-2), and NGC 3818, the remaining three have Sersic's indices n~3-4 in optical and a lower index in the UV. Bright ring/arm-like structures are revealed by UV images and luminosity profiles of NGC 1415, NGC 1533, NGC 1543, NGC 2685, NGC 2974 and IC 2006. The ring/arm-like structures are different from galaxy to galaxy. Sersic indices of UV profiles for those galaxies are in the range n=1.5-3 both in S0s and in galaxies classified as "bona fide" ellipticals, such as NGC 2974 and IC 2006. We notice that in our sample optical Sersic indices are usually larger than in the UV ones. (M2-V) color profiles are bluer in ring/arm-like structures with respect to the galaxy body. The lower values of Sersic's indices in the UV bands with respect to optical ones, suggesting the presence of a disk, point out that the role of the dissipation cannot be neglected in recent evolutionary phases of these early-type galaxies.
- ID:
- ivo://CDS.VizieR/J/ApJS/199/22
- Title:
- UV to far-IR photometry of galaxies
- Short Name:
- J/ApJS/199/22
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper, we present a sample of cluster galaxies devoted to study the environmental influence on the star formation activity. This sample of galaxies inhabits in clusters showing a rich variety in their characteristics and have been observed by the SDSS-DR6 down to M_B_~-18, and by the Galaxy Evolution Explorer AIS throughout sky regions corresponding to several megaparsecs. We assign the broadband and emission-line fluxes from ultraviolet to far-infrared to each galaxy performing an accurate spectral energy distribution for spectral fitting analysis. The clusters follow the general X-ray luminosity versus velocity dispersion trend of L_X_{propto}{sigma}^4.4^_c_.
- ID:
- ivo://CDS.VizieR/J/A+A/533/A142
- Title:
- UV-to-IR fluxes of Hickson compact groups
- Short Name:
- J/A+A/533/A142
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a comprehensive study on the impact of the environment of compact galaxy groups on the evolution of their members using a multi-wavelength analysis, from the UV to the infrared, for a sample of 32 Hickson compact groups (HCGs) containing 135 galaxies. Fitting the SEDs of all galaxies with the state-of-the-art model of da Cunha (2008MNRAS.388.1595D) we can accurately calculate their mass, SFR, and extinction, as well as estimate their infrared luminosity and dust content. We compare our findings with samples of field galaxies, early-stage interacting pairs, and cluster galaxies with similar data. We find that classifying the groups as dynamically "old" or "young", depending on whether or not at least one quarter of their members are early-type systems, is physical and consistent with past classifications of HCGs based on their atomic gas content. Dynamically "old" groups are more compact and display higher velocity dispersions than "young" groups. Late-type galaxies in dynamically "young" groups have specific star formation rates (sSFRs), NUV-r, and mid-infrared colors which are similar to those of field and early stage interacting pair spirals. Late-type galaxies in dynamically "old" groups have redder NUV-r colors, as they have likely experienced several tidal encounters in the past building up their stellar mass, and display lower sSFRs. We identify several late-type galaxies which have sSFRs and colors similar to those of elliptical galaxies, since they lost part of their gas due to numerous interactions with other group members. Also, 25% of the elliptical galaxies in these groups have bluer UV/optical colors than normal ellipticals in the field, probably due to star formation as they accreted gas from other galaxies of the group, or via merging of dwarf companions. Finally, our SED modeling suggests that in 13 groups, 10 of which are dynamically "old", there is diffuse cold dust in the intragroup medium. All this evidence point to an evolutionary scenario in which the effects of the group environment and the properties of the galaxy members are not instantaneous. Early on, the influence of close companions to group galaxies is similar to the one of galaxy pairs in the field. However, as the time progresses, the effects of tidal torques and minor merging, shape the morphology and star formation history of the group galaxies, leading to an increase of the fraction of early-type members and a rapid built up of the stellar mass in the remaining late-type galaxies.
- ID:
- ivo://CDS.VizieR/J/ApJ/877/152
- Title:
- UV to NIR light curves of type Ia SN 2017erp
- Short Name:
- J/ApJ/877/152
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present space-based ultraviolet/optical photometry and spectroscopy with the Swift Ultra-Violet/Optical Telescope and Hubble Space Telescope (HST), respectively, along with ground-based optical photometry and spectroscopy and near-infrared spectroscopy of supernova SN 2017erp. The optical light curves and spectra are consistent with a normal SN Ia. Compared to previous photometric samples in the near-ultraviolet (NUV), SN 2017erp has UV colors that are redder than NUV-blue SNe Ia corrected to similar optical colors. The chromatic difference between SNe 2011fe and 2017erp is dominated by the intrinsic differences in the UV rather than the expected dust reddening. This chromatic difference is similar to the SALT2 color law, derived from rest-frame ultraviolet photometry of higher redshift SNe Ia. Differentiating between intrinsic UV diversity and dust reddening can have important consequences for determining cosmological distances with rest-frame ultraviolet photometry. This ultraviolet spectroscopic series is the first from HST of a normal, albeit reddened, NUV-red SN Ia and is important for analyzing SNe Ia with intrinsically redder NUV colors. We show model comparisons suggesting that metallicity could be the physical difference between NUV-blue and NUV-red SNe Ia, with emission peaks from reverse fluorescence near 3000{AA} implying a factor of ~10 higher metallicity in the upper layers of SN 2017erp compared to SN 2011fe. Metallicity estimates are very model dependent, however, and there are multiple effects in the UV. Further models and UV spectra of SNe Ia are needed to explore the diversity of SNe Ia, which show seemingly independent differences in the near-UV peaks and mid-UV flux levels.
- ID:
- ivo://CDS.VizieR/J/ApJ/898/166
- Title:
- UV to NIR obs. of SN 2019ehk
- Short Name:
- J/ApJ/898/166
- Date:
- 21 Mar 2022 09:18:33
- Publisher:
- CDS
- Description:
- We present panchromatic observations and modeling of the Calcium-rich supernova (SN) 2019ehk in the star-forming galaxy M100 (d~16.2Mpc) starting 10hr after explosion and continuing for ~300days. SN 2019ehk shows a double-peaked optical light curve peaking at t=3 and 15days. The first peak is coincident with luminous, rapidly decaying Swift-XRT-discovered X-ray emission (L_x_~10^41^erg/s at 3days; Lx{propto}t^-3^), and a Shane/Kast spectral detection of narrow H{alpha} and HeII emission lines (v~500km/s) originating from pre-existent circumstellar material (CSM). We attribute this phenomenology to radiation from shock interaction with extended, dense material surrounding the progenitor star at r<10^15^cm and the resulting cooling emission. We calculate a total CSM mass of ~7x10^-3^M_{sun}_ (M_He_/M_H_~6) with particle density n~10^9^cm^-3^. Radio observations indicate a significantly lower density n<10^4^cm^-3^ at larger radii r>(0.1-1)x10^17^cm. The photometric and spectroscopic properties during the second light-curve peak are consistent with those of Ca-rich transients (rise-time of t_r_=13.4!+/-0.210days and a peak B-band magnitude of M_B_=-15.1+/-0.200mag). We find that SN 2019ehk synthesized (3.1+/-0.11)x10^-2^M_{sun}_ of ^56^Ni and ejected M_ej_=(0.72+/-0.040)M_{sun}_ total with a kinetic energy E_k_=(1.8+/-0.10)x10^50^erg. Finally, deep HST pre-explosion imaging at the SN site constrains the parameter space of viable stellar progenitors to massive stars in the lowest mass bin (~10M_{sun}_) in binaries that lost most of their He envelope or white dwarfs (WDs). The explosion and environment properties of SN 2019ehk further restrict the potential WD progenitor systems to low-mass hybrid HeCO WD+CO WD binaries.
- ID:
- ivo://CDS.VizieR/J/ApJ/900/47
- Title:
- UV to NIR spectra of the QSO 2MASS J15165323+1900482
- Short Name:
- J/ApJ/900/47
- Date:
- 21 Mar 2022 09:27:00
- Publisher:
- CDS
- Description:
- We present detailed studies of the partially obscured quasar 2MASSJ151653.23+190048.2 with continuous broadband spectrophotometry from near-infrared (NIR) through optical to ultraviolet (UV). The NIR and optical spectra show strong broad emission lines, while the UV spectrum is dominated by a set of rich intermediate-width emission lines (IELs). These IELs, unshifted with respect to the quasar systemic velocity measured by narrow emission lines, share a common profile of about 1900km/s in FWHM, in contrast to the Balmer and Paschen broad emission lines of FWHM ~6300km/s observed in the optical and NIR. The intermediate width of these lines indicates that the emitting gas may come from the dusty torus region. However, the observed peculiar IEL intensity ratios, such as NV{lambda}1240/Ly{alpha}, indicate that the emitting gas has a very high density, up to ~10^13^cm^-3^. Such a high density is unusual for gas around the dusty torus region, except that we consider mechanisms such as shocks that can produce local ultradense gas. We speculate that these emission lines could originate from the shock region, possibly induced by the quasar outflow colliding with the inner wall of the dusty torus. If true, this may give us an opportunity to peep at the quasar outflows at the scale of the dusty torus that have so far been elusive due to the limited resolving powers of existing facilities.