Number of results to display per page
Search Results
2032. Transits of WASP-39b
- ID:
- ivo://CDS.VizieR/J/A+A/531/A40
- Title:
- Transits of WASP-39b
- Short Name:
- J/A+A/531/A40
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the discovery of WASP-39b, a highly inflated transiting Saturn-mass planet orbiting a late G-type dwarf star with a period of 4.055259-days, Transit Epoch 2455342.9688+/-0.0002 (HJD), of duration 0.1168d.
- ID:
- ivo://CDS.VizieR/J/AJ/159/239
- Title:
- Transmission Spectroscopy Metric of exoplanets
- Short Name:
- J/AJ/159/239
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Recent years have seen increasing interest in the characterization of sub-Neptune-sized planets because of their prevalence in the Galaxy, contrasted with their absence in our solar system. HD97658 is one of the brightest stars hosting a planet of this kind, and we present the transmission spectrum of this planet by combining four Hubble Space Telescope transits, 12 Spitzer/IRAC transits, and eight Microvariability and Oscillations of Stars Telescope (MOST) transits of this system. Our transmission spectrum has a higher signal-to-noise ratio than those from previous works, and the result suggests that the slight increase in transit depth from wavelength 1.1-1.7{mu}m reported in previous works on the transmission spectrum of this planet is likely systematic. Nonetheless, our atmospheric modeling results are inconclusive, as no model provides an excellent match to our data. Nonetheless, we find that atmospheres with high C/O ratios (C/O~>0.8) and metallicities of ~>100 solar metallicity are favored. We combine the mid-transit times from all of the new Spitzer and MOST observations and obtain an updated orbital period of P=9.489295{+/-}0.000005, with a best-fit transit time center at T0=2456361.80690{+/-}0.00038(BJD). No transit timing variations are found in this system. We also present new measurements of the stellar rotation period (34{+/-}2days) and stellar activity cycle (9.6yr) of the host star HD97658. Finally, we calculate and rank the Transmission Spectroscopy Metric of all confirmed planets cooler than 1000K and with sizes between 1R_{Earth}_ and 4R_{Earth}_. We find that at least a third of small planets cooler than 1000K can be well characterized using James Webb Space Telescope, and of those, HD97658b is ranked fifth, meaning that it remains a high-priority target for atmospheric characterization.
2034. TrES-4b RV and Ic curves
- ID:
- ivo://CDS.VizieR/J/A+A/575/L15
- Title:
- TrES-4b RV and Ic curves
- Short Name:
- J/A+A/575/L15
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We update the TrES-4 system parameters using high-precision HARPS-N radial-velocity measurements and new photometric light curves. A combined spectroscopic and photometric analysis allows us to determine a spectroscopic orbit with a semi-amplitude K=51+/-3m/s. The derived mass of TrES-4b is found to be M_p_=0.49+/-0.04M_Jup_, significantly lower than previously reported. Combined with the large radius (R_p_=1.84_-0.09_^+0.08^R_Jup_) inferred from our analysis, TrES-4b becomes the transiting hot Jupiter with the second-lowest density known. We discuss several scenarios to explain the puzzling discrepancy in the mass of TrES-4b in the context of the exotic class of highly inflated transiting giant planets.
- ID:
- ivo://CDS.VizieR/J/ApJ/793/62
- Title:
- Triangulum-Andromeda stellar properties
- Short Name:
- J/ApJ/793/62
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- As large-scale stellar surveys have become available over the past decade, the ability to detect and characterize substructures in the Galaxy has increased dramatically. These surveys have revealed the Triangulum-Andromeda (TriAnd) region to be rich with substructures in the distance range 20-30 kpc, and the relation of these features to each other, if any, remains unclear. An exploration using Two Micron All Sky Survey (2MASS) photometry reveals not only the faint sequence in M giants detected by Rocha-Pinto et al. (2004ApJ...615..732R) spanning the range 100{deg}<l<160{deg} and -50{deg}<b<-15{deg}, but, in addition, a second, brighter and more densely populated sequence. These sequences are likely associated with the distinct main sequences (MSs) discovered (and labeled TriAnd1 and TriAnd2) by Martin et al. (2007ApJ...668L.123M) in an optical survey in the direction of M31, where TriAnd2 is the optical counterpart of the fainter red giant branch (RGB)/asymptotic giant branch sequence of Rocha-Pinto et al. Here, the age, distance, and metallicity ranges for TriAnd1 and TriAnd2 are estimated by simultaneously fitting isochrones to the 2MASS RGB tracks and the optical MS/MS turn-off features. The two populations are clearly distinct in age and distance: the brighter sequence (TriAnd1) is younger (6-10 Gyr) and closer (distance of ~15-21 kpc), whereas the fainter sequence (TriAnd2) is older (10-12 Gyr) and at an estimated distance of ~24-32 kpc. A comparison with simulations demonstrates that the differences and similarities between TriAnd1 and TriAnd2 can simultaneously be explained if they represent debris originating from the disruption of the same dwarf galaxy, but torn off during two distinct pericentric passages.
- ID:
- ivo://CDS.VizieR/J/A+A/616/A75
- Title:
- Triple system HD150136 radial velocities
- Short Name:
- J/A+A/616/A75
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The triple system HD 150136 is composed of an O3 V((f^*^))-O3.5 V((f^+^)) primary, of an O5.5-6 V((f)) secondary and of a more distant O6.5-7 V((f)) tertiary. The latter component went through periastron in 2015-2016, an event that will not occur again within the next eight years. We aim to analyse the tertiary periastron passage to determine the orbital properties of the outer system, to constrain its inclination and its eccentricity, and to determine the actual masses of the three components of the system. We conducted an intensive spectroscopic monitoring of the periastron passage of the tertiary component and combined them with new interferometric measurements. This allows us to derive the orbital solution of the outer orbit in three-dimensional space. We also obtained the light curve of the system to further constrain the inclination of the inner binary. We determine an orbital period of 8.61+/-0.02 years, an eccentricity of 0.682+/-0.002, and an inclination of 106.18+/-0.14{deg} for the outer orbit. The actual masses of the inner system and of the tertiary object are 72.32_-8.49_^+8.45^M_{sun}_ and 15.54_-4.97_^+4.96^M_{sun}_, respectively. From the mass of the inner system and accounting for the known mass ratio between the primary and the secondary, we determine actual masses of 42.81M_{sun}_ and 29.51M_{sun}_ for the primary and the secondary components, respectively. We infer, from the different mass ratios and the inclination of the outer orbit, an inclination of 62.4{deg} for the inner system. This value is confirmed by photometry. Grazing eclipses and ellipsoidal variations are detected in the light curve of HD 150136. We also compute the distance of the system to 1.096+/-0.274kpc. By combining spectroscopy, interferometry, and photometry, HD 150136 offers us a unique chance to compare theory and observations. The masses estimated through our analysis are smaller than those constrained by evolutionary models. The formation of this triple system suggests similar ages for the three components within the errorbars. Finally, we show that Lidov-Kozai cycles have no effect on the evolution of the inner binary, which suggests that the latter will experience mass transfer leading to a merger of the two stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/885/9
- Title:
- Triple system HD 28363; RVel and visual observations
- Short Name:
- J/ApJ/885/9
- Date:
- 15 Mar 2022 07:55:42
- Publisher:
- CDS
- Description:
- The star HD28363 in the Hyades cluster has been known for over a century as a visual binary with a period of 40yr. The secondary is, in turn, a single-lined spectroscopic binary with a 21day period. Here we report extensive spectroscopic monitoring of this hierarchical triple system that reveals the spectral lines of the third star for the first time. Combined with astrometric information, this makes it possible to determine the dynamical masses of all three stars. Only six other binaries in the Hyades have had their individual component masses determined dynamically. We infer the properties of the system by combining our radial-velocity measurements with visual observations, lunar occultation measurements, and with proper motions from the Hipparcos and Gaia missions that provide a constraint on the astrometric acceleration. We derive a mass of 1.341_-0.024_^+0.026^M{odot} for the visual primary, and 1.210{+/-}0.021 and 0.781{+/-}0.014 M{sun} for the other two stars. These measurements along with those for the other six systems establish an empirical mass-luminosity relation in the Hyades that is in broad agreement with current models of stellar evolution for the known age and chemical composition of the cluster.
2038. TROY project. I.
- ID:
- ivo://CDS.VizieR/J/A+A/609/A96
- Title:
- TROY project. I.
- Short Name:
- J/A+A/609/A96
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The detection of Earth-like planets, exocomets or Kuiper belts show that the different components found in the solar system should also be present in other planetary systems. Trojans are one of these components and can be considered fossils of the first stages in the life of planetary systems. Their detection in extrasolar systems would open a new scientific window to investigate formation and migration processes. In this context, the main goal of the TROY project is to detect exotrojans for the first time and to measure their occurrence rate (eta-Trojan). In this first paper, we describe the goals and methodology of the project. Additionally, we used archival radial velocity data of 46 planetary systems to place upper limits on the mass of possible trojans and investigate the presence of co-orbital planets down to several tens of Earth masses. We used archival radial velocity data of 46 close-in (P<5-days) transiting planets (without detected companions) with information from high-precision radial velocity instruments. We took advantage of the time of mid-transit and secondary eclipses (when available) to constrain the possible presence of additional objects co-orbiting the star along with the planet. This, together with a good phase coverage, breaks the degeneracy between a trojan planet signature and signals coming from additional planets or underestimated eccentricity. We identify nine systems for which the archival data provide >1-sigma evidence for a mass imbalance between L4 and L5. Two of these systems provide >2{sigma} detection, but no significant detection is found among our sample. We also report upper limits to the masses at L4/L5 in all studied systems and discuss the results in the context of previous findings.
- ID:
- ivo://CDS.VizieR/J/A+A/603/A81
- Title:
- Trumpler 14 and 16 in the Carina nebula
- Short Name:
- J/A+A/603/A81
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first extensive spectroscopic study of the global population in star clusters Trumpler 16, Trumpler 14, and Collinder 232 in the Carina nebula, using data from the Gaia-ESO Survey, down to solar-mass stars. In addition to the standard homogeneous survey data reduction, a special processing was applied here because of the bright nebulosity surrounding Carina stars. We find about 400 good candidate members ranging from OB types down to slightly subsolar masses. About 100 heavily reddened early-type Carina members found here were previously unrecognized or poorly classified, including two candidate O stars and several candidate Herbig Ae/Be stars. Their large brightness makes them useful tracers of the obscured Carina population. The spectroscopically derived temperatures for nearly 300 low-mass members enables the inference of individual extinction values and the study of the relative placement of stars along the line of sight. We find a complex spatial structure with definite clustering of low-mass members around the most massive stars and spatially variable extinction. By combining the new data with existing X-ray data, we obtain a more complete picture of the three-dimensional spatial structure of the Carina clusters and of their connection to bright and dark nebulosity and UV sources. The identification of tens of background giants also enables us to determine the total optical depth of the Carina nebula along many sightlines. We are also able to put constraints on the star formation history of the region with Trumpler 14 stars found to be systematically younger than stars in other subclusters. We find a large percentage of fast-rotating stars among Carina solar-mass members, which provide new constraints on the rotational evolution of pre-main-sequence stars in this mass range.
- ID:
- ivo://CDS.VizieR/J/A+A/635/A152
- Title:
- Tucana dSph galaxy spectroscopic dataset
- Short Name:
- J/A+A/635/A152
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Isolated local group (LG) dwarf galaxies have evolved most or all of their life unaffected by interactions with the large LG spirals and therefore offer the opportunity to learn about the intrinsic characteristics of this class of objects. Our aim is to explore the internal kinematic and metallicity properties of one of the three isolated LG early-type dwarf galaxies, the Tucana dwarf spheroidal. This is an intriguing system, as it has been found in the literature to have an internal rotation of up to 16km/s, a much higher velocity dispersion than dwarf spheroidals of similar luminosity, and a possible exception to the too-big-too-fail problem. We present the results of a new spectroscopic dataset that we procured from the Very Large Telescope (VLT) taken with the FORS2 instrument in the region of the Ca II triplet for 50 candidate red giant branch stars in the direction of the Tucana dwarf spheroidal. These yielded line-of-sight (l.o.s.) velocity and metallicity ([Fe/H]) measurements of 39 effective members that double the number of Tucana's stars with such measurements. In addition, we re-reduce and include in our analysis the other two spectroscopic datasets presented in the literature, the VLT/FORS2 sample by Fraternali et al. (2009A&A...499..121F), and the VLT/FLAMES one from Gregory et al. (2019MNRAS.485.2010G). Across the various datasets analyzed, we consistently measure a l.o.s. systemic velocity of 180+/-1.3km/s and find that a dispersion-only model is moderately favored over models that also account for internal rotation. Our best estimate of the internal l.o.s. velocity dispersion is 6.2_-1.3_^+1.6^km/s, much smaller than the values reported in the literature and in line with similarly luminous dwarf spheroidals; this is consistent with NFW halos of circular velocities <30km/s. Therefore, Tucana does not appear to be an exception to the too-big-to-fail problem, nor does it appear to reside in a dark matter halo much more massive than those of its siblings. As for the metallicity properties, we do not find anything unusual; there are hints of the presence of a metallicity gradient, but more data are needed to pinpoint its presence.