- ID:
- ivo://CDS.VizieR/J/AJ/140/184
- Title:
- RAVE double-lined spectroscopic binaries
- Short Name:
- J/AJ/140/184
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We devise a new method for the detection of double-lined binary stars in a sample of the Radial Velocity Experiment (RAVE) survey spectra. The method is both tested against extensive simulations based on synthetic spectra and compared to direct visual inspection of all RAVE spectra. It is based on the properties and shape of the cross-correlation function, and is able to recover ~80% of all binaries with an orbital period of order 1 day. Systems with periods up to 1 yr are still within the detection reach. We have applied the method to 25,850 spectra of the RAVE second data release and found 123 double-lined binary candidates, only eight of which are already marked as binaries in the SIMBAD database. Among the candidates, there are seven that show spectral features consistent with the RS CVn type (solar type with active chromosphere) and seven that might be of W UMa type (over-contact binaries). One star, HD 101167, seems to be a triple system composed of three nearly identical G-type dwarfs. The tested classification method could also be applicable to the data of the upcoming Gaia mission.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/615/A131
- Title:
- R CMa radial velocity curves
- Short Name:
- J/A+A/615/A131
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- R Canis Majoris is the prototype of a small group of Algol-type stars showing short orbital periods and low mass ratios. A previous detection of short-term oscillations in its light curve has not yet been confirmed. We investigate a new time series of high-resolution spectra with the aim to derive improved stellar and system parameters, to search for the possible impact of a third component in the observed spectra, to look for indications of activity in the Algol system, and to search for short-term variations in radial velocities. We disentangled the composite spectra into the spectra of the binary components. Then we analysed the resulting high signal-to-noise spectra of both stars. Using a newly developed program code based on an improved method of least-squares deconvolution, we were able to determine the radial velocities of both components also during primary eclipse. This allowed us to develop a better model of the system including the Rossiter-McLaughlin effect and to derive improved orbital parameters. Combining the results with those from spectrum analysis, we obtain accurate stellar and system parameters. We further deduce at least one oscillation frequency of 21.38c/d. It could be detected during primary eclipses only and confirms a previous photometric finding. Results point to an amplitude amplification of non-radial pulsation modes due to the eclipse mapping effect. The presence of a HeI line in the spectra indicates mass transfer in the R CMa system. Calculations of its Roche geometry give evidence that the cool secondary component may fill its Roche lobe. No evidence of a third body in the system could be found in the observed spectra.
- ID:
- ivo://CDS.VizieR/J/ApJ/616/562
- Title:
- Rotational velocities in binaries
- Short Name:
- J/ApJ/616/562
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We found in the published literature the rotational velocities for 162 B0-B9.5, 151 A0-A5, and 86 A6-F0 stars, all of luminosity classes V or IV, that are in spectroscopic or visual binaries with known orbital elements.
- ID:
- ivo://CDS.VizieR/J/A+AS/127/277
- Title:
- Rotation and binary rate among giant F stars
- Short Name:
- J/A+AS/127/277
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have tested the hypothesis of Berthet (1991A&A...251..171B) which foresees that Am stars become giant metallic A and F stars (defined by an enhanced value of the blanketing parameter {delta}m2 of the Geneva photometry) when they evolved. If this hypothesis is right, Am and metallic A-FIII stars need to have the same rate of binaries and a similar distribution of vsini. From our new spectroscopic data and from vsini and radial velocities in the literature, we show that it is not the case. The metallic giant stars are often fast rotators with vsini larger than 100 km/s, while the maximum rotational velocity for Am stars is about 100 km/s. The rate of tight binaries with periods less than 1000 days is less than 30 % among metallic giants, which is incompatible with the value of 75 % for Am stars (Abt & Levy, 1985ApJS...59..229A). Therefore, the simplest way to explain the existence of giant metallic F stars is to suggest that all normal A and early F stars might go through a short "metallic" phase when they are finishing their life on the main sequence. Besides, it is shown that only giant stars with spectral type comprised between F0 and F6 may have a really enhanced {delta}m2 value, while all A-type giants seem to be normal.
- ID:
- ivo://CDS.VizieR/J/MNRAS/416/817
- Title:
- RV catalog of O-type stars in IC 2944 and Cen OB2
- Short Name:
- J/MNRAS/416/817
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using an extended set of multi-epoch high resolution high signal-to-noise ratio optical spectra, we re-address the multiplicity properties of the O-type stars in IC 2944 and in the Cen OB2 association. We present new evidence of binarity for five objects and we confirm the multiple nature of another two. We derive the first orbital solutions for HD 100099, HD 101436 and HD 101190 and we provide additional support for HD 101205 being a quadruple system. The minimal spectroscopic binary fraction in our sample is f_min_=0.57. Using numerical simulations, we show that the detection rate of our observational campaign is close to 90%, leaving thus little room for undetected spectroscopic binary systems. The statistical properties of the O-star population in IC 2944 are similar, within the uncertainties, to the results obtained in the earlier papers in this series despite the fact that sample size effects limit the significance of the comparison. Using newly derived spectroscopic parallaxes, we reassess the distance to IC 2944 and obtained 2.3+/-0.3kpc, in agreement with previous studies. We also confirm that, as far as the O stars are concerned, the IC 2944 cluster is most likely a single entity.
- ID:
- ivo://CDS.VizieR/J/A+A/550/A107
- Title:
- RV catalogue of O stars in 30 Doradus
- Short Name:
- J/A+A/550/A107
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Tarantula Nebula in the Large Magellanic Cloud is our closest view of a starburst region and is the ideal environment to investigate important questions regarding the formation, evolution and final fate of the most massive stars. We analyze the multiplicity properties of the massive O-type star population observed through multi-epoch spectroscopy in the framework of the VLT-FLAMES Tarantula Survey. With 360 O-type stars, this is the largest homogeneous sample of massive stars analyzed to date. We use multi-epoch spectroscopy and variability analysis to identify spectroscopic binaries. We also use a Monte-Carlo method to correct for observational biases. By modelling simultaneously the observed binary fraction, the distributions of the amplitudes of the radial velocity variations and the distribution of the time scales of these variations, we derive the intrinsic current binary fraction and period and mass-ratio distributions. We observe a spectroscopic binary fraction of 0.35+/-0.03, which corresponds to the fraction of objects displaying statistically significant radial velocity variations with an amplitude of at least 20km/s . We compute the intrinsic binary fraction to be 0.51+/-0.04. We adopt power-laws to describe the intrinsic period and mass-ratio distributions: f(log_10_P/d)~(log_10_ P/d)^pi^ (with log_10_P/d in the range 0.15-3.5) and f(q)~q^kappa^ with 0.1<q=M2/M1< 1.0. The power-law indexes that best reproduce the observed quantities are pi=-0.45+/-0.30 and kappa=-1.0+/-0.4. The period distribution that we obtain thus favours shorter period systems compared to an Opik law (pi=0). The mass ratio distribution is slightly skewed towards low mass ratio systems but remains incompatible with a random sampling of a classical mass function (kappa=-2.35). The binary fraction seems mostly uniform across the field of view and independent of the spectral types and luminosity classes. The binary fraction in the outer region of the field of view (r>7.8 , i.e. ~117pc) and among the O9.7 I/II objects are however significantly lower than expected from statistical fluctuations. The observed and intrinsic binary fractions are also lower for the faintest objects in our sample (Ks>15.5mag), which results from observational effects and the fact that our O star sample is not magnitude-limited but is defined by a spectral-type cutoff. We also conclude that magnitude-limited investigations are biased towards larger binary fractions. Using the multiplicity properties of the O stars in the Tarantula region and simple evolutionary considerations, we estimate that over 50% of the current O star population will exchange mass with its companion within a binary system. This shows that binary interaction is greatly affecting the evolution and fate of massive stars, and must be taken into account to correctly interpret unresolved populations of massive stars.
- ID:
- ivo://CDS.VizieR/J/MNRAS/386/447
- Title:
- RV catalogue of O-type stars in NGC 6231
- Short Name:
- J/MNRAS/386/447
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a long-term high-resolution spectroscopy campaign on the O-type stars in NGC 6231. We revise the spectral classification and multiplicity of these objects and we constrain the fundamental properties of the O-star population. Almost three quarters of the O-type stars in the cluster are members of a binary system. The minimum binary fraction is 0.63, with half the O-type binaries having an orbital period of the order of a few days. The eccentricities of all the short-period binaries are revised downward, and henceforth match a normal period-eccentricity distribution. The mass-ratio distribution shows a large preference for O+OB binaries, ruling out the possibility that, in NGC 6231, the companion of an O-type star is randomly drawn from a standard IMF. Obtained from a complete and homogeneous population of O-type stars, our conclusions provide interesting observational constraints to be confronted with the formation and early-evolution theories of O stars.
- ID:
- ivo://CDS.VizieR/J/MNRAS/400/1479
- Title:
- RV catalogue of O-type stars in NGC 6611
- Short Name:
- J/MNRAS/400/1479
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Based on a set of over 100 medium- to high-resolution optical spectra collected from 2003 to 2009, we investigate the properties of the O-type star population in NGC 6611 in the core of the Eagle Nebula (M16). Using a much more extended data set than previously available, we revise the spectral classification and multiplicity status of the nine O-type stars in our sample. We confirm two suspected binaries and derive the first SB2 orbital solutions for two systems. We further report that two other objects are displaying a composite spectrum, suggesting possible long- period binaries. Our analysis is supported by a set of Monte-Carlo simulations, allowing us to estimate the detection biases of our campaign and showing that the latter do not affect our conclusions. The absolute minimal binary fraction in our sample is f_min_=0.44 but could be as high as 0.67 if all the binary candidates are confirmed. As in NGC 6231 (see Paper I, Sana et al., Cat. J/MNRAS/386/447), up to 75% of the O star population in NGC 6611 are found in an O+OB system, thus implicitly excluding random pairing from a classical IMF as a process to describe the companion association in massive binaries. No statistical difference could be further identified in the binary fraction, mass-ratio and period distributions between NGC 6231 and NGC 6611, despite the difference in age and environment of the two clusters.
- ID:
- ivo://CDS.VizieR/J/A+A/610/A17
- Title:
- RV of candidate hybrid variable stars
- Short Name:
- J/A+A/610/A17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Hundreds of candidate hybrid pulsators of intermediate type A-F were revealed by recent space missions. Hybrid pulsators allow us to study the full stellar interiors, where both low-order p- and high-order g-modes are simultaneously excited. The true hybrid stars must be identified since other processes, related to stellar multiplicity or rotation, might explain the presence of (some) low frequencies observed in their periodograms. We measured the radial velocities of 50 candidate delta Scuti - gamma Doradus hybrid stars from the Kepler mission with the Hermes and Ace spectrographs over a time span of months to years. We aim to derive the fraction of binary and multiple systems and to provide an independent and homogeneous determination of the atmospheric properties and v.sini for all targets. The long(er)-term objective is to identify the (probable) physical cause of the low frequencies. We computed one-dimensional cross-correlation functions (CCFs) in order to find the best set of parameters in terms of number of components, spectral type(s), and v.sini for each target. Fundamental parameters were determined by fitting (composite) synthetic spectra to the normalised median spectra corrected for the appropriate Doppler shifts. We report on the analysis of 478 high-resolution Hermes and 41 Ace spectra of A/F-type candidate hybrid pulsators from the Kepler field. We determined their radial velocities, projected rotational velocities, and atmospheric properties and classified our targets based on the shape of the CCFs and the temporal behaviour of the radial velocities. We derived orbital solutions for seven new systems. Three preliminary long-period orbital solutions are confirmed by a photometric time-delay analysis. Finally, we determined a global multiplicity fraction of 27 percent in our sample of candidate hybrid stars.
- ID:
- ivo://CDS.VizieR/J/AN/341/99
- Title:
- RV of 11 spectroscopic binaries
- Short Name:
- J/AN/341/99
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of our second radial velocity (RV) monitoring campaign, carried out with the Echelle spectrograph FLECHAS at the University Observatory Jena in the course of the Grosschwabhausen binary survey between December 2016 and June 2018. The aim of this project is to obtain precise RV measurements for spectroscopic binary stars in order to redetermine, verify, improve, and constrain their Keplerian orbital solutions. In this paper, we describe the observations, data reduction, and analysis and present the results of this project. In total, we have taken 721 RV measurements of 11 stars and derived well-determined orbital solutions for nine systems (seven single- and two double-lined spectroscopic binaries) with periods in the range between 2 and 70 days. In addition, we could rule out the orbital solutions for the previously classified spectroscopic binary systems HIP 107136 and HIP 107533, whose radial velocities are found to be constant on the km/s-level over a span of time of more than 500 days. In the case of HIP 2225, a significant change of its systematic velocity is detected between our individual observing epochs, indicating the presence of an additional companion, which is located on a wider orbit in this system.