- ID:
- ivo://CDS.VizieR/J/A+A/643/A71
- Title:
- Members for 20 open clusters
- Short Name:
- J/A+A/643/A71
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Previous studies of open clusters have shown that lithium depletion is not only strongly age dependent but also shows a complex pattern with other parameters that is not yet understood. For pre- and main-sequence late-type stars, these parameters include metallicity, mixing mechanisms, convection structure, rotation, and magnetic activity. We perform a thorough membership analysis for a large number of stars observed within the Gaia-ESO survey (GES) in the field of 20 open clusters, ranging in age from young clusters and associations, to intermediate-age and old open clusters. Based on the parameters derived from the GES spectroscopic observations, we obtained lists of candidate members for each of the clusters in the sample by deriving RV distributions and studying the position of the kinematic selections in the EW(Li) versus Teff plane to obtain lithium members. We used gravity indicators to discard field contaminants and studied [Fe/H] metallicity to further confirm the membership of the candidates. We also made use of studies using recent data from the Gaia DR1 and DR2 releases to assess our member selections. We identified likely member candidates for the sample of 20 clusters observed in GES (iDR4) with UVES and GIRAFFE, and conducted a comparative study that allowed us to characterize the properties of these members, as well as identify field contaminant stars, both lithium-rich giants and non-giant outliers. This work is the first step towards the calibration of the lithium-age relation and its dependence on other GES parameters. During this project we aim to use this relation to infer the ages of GES field stars, and identify their potential membership to young associations and stellar kinematic groups of different ages.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/159/282
- Title:
- Membership in Ophiuchus & Upper Scorpius complex
- Short Name:
- J/AJ/159/282
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have performed a survey for new members of the Ophiuchus cloud complex using high-precision astrometry from the second data release of Gaia, proper motions measured with multi-epoch images from the Spitzer Space Telescope, and color-magnitude diagrams constructed with photometry from various sources. Through spectroscopy of candidates selected with those data, we have identified 155 new young stars. Based on available measurements of kinematics, we classify 102, 47, and 6 of those stars as members of Ophiuchus, Upper Sco, and other populations in Sco-Cen, respectively. We have also assessed the membership of all other stars in the vicinity of Ophiuchus that have spectroscopic evidence of youth from previous studies, arriving at a catalog of 373 adopted members of the cloud complex. For those adopted members, we have compiled mid-infrared photometry from Spitzer and the Wide-field Infrared Survey Explorer and have used mid-infrared colors to identify and classify circumstellar disks. We find that 210 of the members show evidence of disks, including 48 disks that are in advanced stages of evolution. Finally, we have estimated the relative median ages of the populations near the Ophiuchus clouds and the surrounding Upper Sco association using absolute K-band magnitudes (MK) based on Gaia parallaxes. If we adopt an age 10Myr for Upper Sco, then the relative values of MK imply median ages of ~2Myr for L1689 and embedded stars in L1688, 3-4Myr for low-extinction stars near L1688, and ~6Myr for the group containing {rho}Oph.
- ID:
- ivo://CDS.VizieR/J/A+A/637/A43
- Title:
- Membership in the Cepheus association
- Short Name:
- J/A+A/637/A43
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Young field stars are hardly distinguishable from older ones because their space motion rapidly mixes them with the stellar population of the Galactic plane.Nevertheless, a careful target selection allows for young stars to be spotted throughout the sky. We aim to identify additional sources associated with the four young comoving stars that we discovered towards the CO Cepheus void and to provide a comprehensive view of the Cepheus association. Based on multivariate analysis methods, we have built an extended sample of 193 young star candidates, which are the optical and infrared counterparts of ROSAT All-Sky Survey and XMM-Newton X-ray sources. From optical spectroscopic observations, we measured their radial velocity with the cross-correlation technique. We derived their atmospheric parameters and projected rotational velocity with the code ROTFIT. We applied the subtraction of inactive templates to measure the lithium equivalent width, from which we infer their lithium abundance and age. Finally, we studied their kinematics using the second Gaia data release. Our sample is mainly composed of young or active stars and multiple systems. We identify two distinct populations of young stars that are spatially and kinematically separated. Those with an age between 100 and 300Myr are mostly projected towards the Galactic plane. In contrast, 23 of the 37 sources younger than 30Myr are located in the CO Cepheus void, and 21 of them belong to the stellar kinematic group that we previously reported in this sky area. We report a total of 32 bona fide members and nine candidates for this nearby (distance=157+/-10pc) young (age=10-20Myr) stellar association. According to the spatial distribution of its members, the original cluster is already dispersed and partially mixed with the local population of the Galactic plane.
- ID:
- ivo://CDS.VizieR/J/ApJ/832/87
- Title:
- Members of the young open cluster IC 2395
- Short Name:
- J/ApJ/832/87
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new deep UBVRI images and high-resolution multi-object optical spectroscopy of the young (~6-10Myr old), relatively nearby (800pc) open cluster IC 2395. We identify nearly 300 cluster members and use the photometry to estimate their spectral types, which extend from early B to middle M. We also present an infrared imaging survey of the central region using the IRAC and MIPS instruments on board the Spitzer Space Telescope, covering the wavelength range from 3.6 to 24{mu}m. Our infrared observations allow us to detect dust in circumstellar disks originating over a typical range of radii from ~0.1 to ~10 au from the central star. We identify 18 Class II, 8 transitional disk, and 23 debris disk candidates, respectively, 6.5%, 2.9%, and 8.3% of the cluster members with appropriate data. We apply the same criteria for transitional disk identification to 19 other stellar clusters and associations spanning ages from ~1 to ~18Myr. We find that the number of disks in the transitional phase as a fraction of the total with strong 24{mu}m excesses ([8]-[24]>=1.5) increases from (8.4+/-1.3)% at ~3Myr to (46+/-5)% at ~10Myr. Alternative definitions of transitional disks will yield different percentages but should show the same trend.
- ID:
- ivo://CDS.VizieR/J/ApJ/838/11
- Title:
- Member stars in the MW satellite Tucana III
- Short Name:
- J/ApJ/838/11
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Magellan/IMACS spectroscopy of the recently discovered Milky Way satellite Tucana III (Tuc III). We identify 26 member stars in Tuc III from which we measure a mean radial velocity of v_hel_=-102.3+/-0.4(stat.)+/-2.0(sys.)km/s, a velocity dispersion of 0.1_-0.1_^+0.7^km/s, and a mean metallicity of [Fe/H]=-2.42_-0.08_^+0.07^. The upper limit on the velocity dispersion is {sigma}<1.5km/s at 95.5% confidence, and the corresponding upper limit on the mass within the half-light radius of Tuc III is 9.0x10^4^M_{sun}_. We cannot rule out mass-to-light ratios as large as 240M_{sun}_/L_{sun}_ for Tuc III, but much lower mass-to-light ratios that would leave the system baryon-dominated are also allowed. We measure an upper limit on the metallicity spread of the stars in Tuc III of 0.19dex at 95.5% confidence. Tuc III has a smaller metallicity dispersion and likely a smaller velocity dispersion than any known dwarf galaxy, but a larger size and lower surface brightness than any known globular cluster. Its metallicity is also much lower than those of the clusters with similar luminosity. We therefore tentatively suggest that Tuc III is the tidally stripped remnant of a dark matter-dominated dwarf galaxy, but additional precise velocity and metallicity measurements will be necessary for a definitive classification. If Tuc III is indeed a dwarf galaxy, it is one of the closest external galaxies to the Sun. Because of its proximity, the most luminous stars in Tuc III are quite bright, including one star at V=15.7 that is the brightest known member star of an ultra-faint satellite.
- ID:
- ivo://CDS.VizieR/VI/99
- Title:
- Merged Log of IUE Observations
- Short Name:
- VI/99
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The log contains a summary of all IUE Newly Extracted Spectra (INES), which resulted from a post-processing effort at Vilspa. It was constructed by using verified data from the IUE Final Archive Master Catalogue. The observations cover the whole life of the satellite, from March 1978 to September 1996.
- ID:
- ivo://CDS.VizieR/VI/75
- Title:
- Merged Log of IUE Observations
- Short Name:
- VI/75
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The log contains data from January 26, 1978 through Dec. 92. It is sorted by right ascension.
- ID:
- ivo://CDS.VizieR/J/ApJS/240/39
- Title:
- Merging galaxy cluster deep observations
- Short Name:
- J/ApJS/240/39
- Date:
- 18 Jan 2022 14:59:05
- Publisher:
- CDS
- Description:
- Multi-band photometric and multi-object spectroscopic surveys of merging galaxy clusters allow for the characterization of the distributions of constituent DM and galaxy populations, constraints on the dynamics of the merging subclusters, and an understanding of galaxy evolution of member galaxies. We present deep photometric observations from Subaru/SuprimeCam and a catalog of 4431 spectroscopic galaxies from Keck/DEIMOS observations of 29 merging galaxy clusters ranging in redshift from z=0.07 to 0.55. The ensemble is compiled based on the presence of radio relics, which highlight cluster-scale collisionless shocks in the intracluster medium. Together with the spectroscopic and photometric information, the velocities, timescales, and geometries of the respective merging events may be tightly constrained. In this preliminary analysis, the velocity distributions of 28 of the 29 clusters are shown to be well fit by single Gaussians. This indicates that radio-relic mergers largely occur transverse to the line of sight and/or near-apocenter. In this paper, we present our optical and spectroscopic surveys, preliminary results, and a discussion of the value of radio-relic mergers for developing accurate dynamical models of each system.
- ID:
- ivo://CDS.VizieR/J/AJ/150/71
- Title:
- Metal abundances of KISS galaxies. V.
- Short Name:
- J/AJ/150/71
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present high signal-to-noise ratio spectroscopy of 15 emission-line galaxies cataloged in the KPNO International Spectroscopic Survey, selected for their possession of high equivalent width [OIII] lines. The primary goal of this study was to attempt to derive direct-method (T_e_) abundances for use in constraining the upper-metallicity branch of the R_23_ relation. The spectra cover the full optical region from [OII]{lambda}{lambda}3726,3729 to [SIII]{lambda}{lambda}9069,9531 and include the measurement of [OIII]{lambda}4363 in 13 objects. From these spectra, we determine abundance ratios of helium, nitrogen, oxygen, neon, sulfur, and argon. We find these galaxies to predominantly possess oxygen abundances in the range of 8.0<~12+log(O/H)<~8.3. We present a comparison of direct-method abundances with empirical strong-emission-line techniques, revealing several discrepancies. We also present a comparison of direct-method oxygen abundance calculations using electron temperatures determined from emission lines of O^++^ and S^++^, finding a small systematic shift to lower T_e_(~1184K) and higher metallicity (~0.14dex) for sulfur-derived T_e_ compared to oxygen-derived T_e_. Finally, we explore in some detail the different spectral activity types of targets in our sample, including regular star-forming galaxies, those with suspected AGN contamination, and a local pair of low-metallicity, high-luminosity compact objects.
- ID:
- ivo://CDS.VizieR/J/ApJ/871/151
- Title:
- METAL Hubble program. I. Initial results
- Short Name:
- J/ApJ/871/151
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Metal Evolution, Transport, and Abundance in the Large Magellanic Cloud (METAL) is a large cycle 24 program on the Hubble Space Telescope aimed at measuring dust extinction properties and interstellar depletions in the Large Magellanic Cloud (LMC) at half-solar metallicity. The 101-orbit program is composed of Cosmic Origins Spectrograph (COS) and Space Telescope Imaging Spectrograph (STIS) spectroscopy toward 33 LMC massive stars between 1150 and 3180{AA} and parallel Wide Field Camera 3 (WFC3) imaging in seven near-UV to near-IR filters. The fraction of silicon in the gas phase (depletion) obtained from the spectroscopy decreases with increasing hydrogen column density. Depletion patterns for silicon differ between the Milky Way, LMC, and Small Magellanic Cloud (SMC), with the silicon depletion level offsetting almost exactly the metallicity differences, leading to constant gas-phase abundances in those galaxies for a given hydrogen column density. The silicon depletion correlates linearly with the absolute-to-selective extinction, RV, indicating a link between gas depletion and dust grain size. Extinction maps are derived from the resolved stellar photometry in the parallel imaging, which can be compared to far-IR images from Herschel and Spitzer to estimate the emissivity of dust at LMC metallicity. The full METAL sample of depletions, UV extinction curves, and extinction maps will inform the abundance, size, composition, and optical properties of dust grains in the LMC, comprehensively improve our understanding of dust properties, and improve the accuracy with which dust-based gas masses, star formation rates, and star formation histories in nearby and high-redshift galaxies are estimated. This overview paper describes the goals, design, data reduction, and initial results of the METAL survey.