- ID:
- ivo://CDS.VizieR/J/ApJ/855/140
- Title:
- MMT spectra of SNRs and SNR candidates in M33
- Short Name:
- J/ApJ/855/140
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- To date, over 220 emission nebulae in M33 have been identified as supernova remnants (SNRs) or SNR candidates, principally through [SII]:H{alpha} line ratios that are elevated compared to those in HII regions. In many cases, the determination of a high [SII]:H{alpha} line ratio was made using narrow-band interference filter images and has not been confirmed spectroscopically. Here, we present MMT 6.5m optical spectra that we use to measure [SII]:H{alpha} and other line ratios in an attempt to determine the nature of these suggested candidates. Of the 197 objects in our sample, 120 have no previously published spectroscopic observations. We confirm that the majority of candidate SNRs have emission line ratios characteristic of SNRs. While no candidates show Doppler-broadened lines expected from young, ejecta-dominated SNRs (>~1000km/s), a substantial number do exhibit lines that are broader than HII regions. We argue that the majority of the objects with high [SII]:H{alpha} line ratios (>0.4) are indeed SNRs, but the distinction between HII regions and SNRs becomes less obvious at low surface brightness, and additional criteria, such as X-ray detection, are needed. We discuss the properties of the sample as a whole and compare it with similar samples in other nearby galaxies.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/903/151
- Title:
- MMT spectroscopic redshift catalog of the A521 field
- Short Name:
- J/ApJ/903/151
- Date:
- 21 Mar 2022 05:59:04
- Publisher:
- CDS
- Description:
- A521 has been a subject of extensive panchromatic studies from X-ray to radio. The cluster possesses a number of remarkable features, including a bright radio relic with a steep spectrum, more than three distinct galaxy groups forming a filament, and two disturbed X-ray peaks at odds with the distant position and tilted orientation of the radio relic. These lines of evidence indicate a complex merger. In this paper, we present a multiwavelength study of A521 based on Subaru optical, Hubble Space Telescope infrared, Chandra X-ray, Giant Metrewave Radio Telescope radio, and Multiple Mirror Telescope optical spectroscopic observations. Our weak-lensing (WL) analysis with improved systematics control reveals that A521 is mainly composed of three substructures aligned in the northwest to southeast orientation. These WL mass substructures are remarkably well-aligned with the cluster optical luminosity distribution constructed from our new enhanced cluster member catalog. These individual substructure masses are determined by simultaneously fitting three Navarro-Frenk-White profiles. We find that the total mass of A521 modeled by the superposition of the three halos is 13.0_-1.3_^+1.0^x10^14^M{odot}, a factor of 2 higher than the previous WL measurement. With these WL mass constraints combined with X-ray and radio features, we consider two merging scenarios, carry out the corresponding numerical simulations, and discuss the strengths and weaknesses of each case.
- ID:
- ivo://CDS.VizieR/J/ApJS/216/2
- Title:
- MnI hyperfine lines in the 1.4-1.8um (H) band
- Short Name:
- J/ApJS/216/2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The three Mn I lines at 17325, 17339, and 17349{AA} are among the 25 strongest lines (log(gf)>0.5) in the H band. They are all heavily broadened due to hyperfine structure, and the profiles of these lines have so far not been understood. Earlier studies of these lines even suggested that they were blended. In this work, the profiles of these three infrared (IR) lines have been studied theoretically and compared to experimental spectra to assist in the complete understanding of the solar spectrum in the IR. It is shown that the structure of these lines cannot be described in the conventional way using the diagonal A and B hyperfine interaction constants. The off-diagonal hyperfine interaction not only has a large impact on the energies of the hyperfine levels, but also introduces a large intensity redistribution among the hyperfine lines, changing the line profiles dramatically. By performing large-scale calculations of the diagonal and off-diagonal hyperfine interaction and the gf-values between the upper and lower hyperfine levels and using a semi-empirical fitting procedure, we achieved agreement between our synthetic and experimental spectra. Furthermore, we compare our results with observations of stellar spectra. The spectra of the Sun and the K1.5 III red giant star Arcturus were modeled in the relevant region, 1.73-1.74{mu}m, using our theoretically predicted gf-values and energies for each individual hyperfine line. Satisfactory fits were obtained and clear improvements were found using our new data compared with the old available Mn I data.
- ID:
- ivo://CDS.VizieR/J/A+A/504/359
- Title:
- Mock spectro-photometric catalog of galaxies
- Short Name:
- J/A+A/504/359
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Future dark energy space missions such as JDEM and EUCLID are being designed to survey the galaxy population to trace the geometry of the universe and the growth of structure, which both depend on the cosmological model. To reach the goal of high precision cosmology they need to evaluate the capabilities of different instrument designs based on realistic mock catalog. The aim of this paper is to construct realistic and flexible mock catalogs based on our knowledge of galaxy population from current deep surveys. We explore two categories of mock catalog : (i) based on luminosity functions fit of observations (GOODS, UDF, COSMOS, VVDS) using the Le Phare software (ii) based on the observed COSMOS galaxy distribution which benefits from all the properties of the data-rich COSMOS survey. For these two catalogs, we have produced simulated number counts in several bands, color diagrams and redshift distribution for validation against real observational data. We also derive some basic requirements to help designing future Dark Energy mission in terms of number of galaxies available for the weak-lensing analysis as a function of the PSF size and depth of the survey. We also compute the spectroscopic success rate for future spectroscopic redshift surveys (i) aiming at measuring BAO in the case of the wide field spectroscopic redshift survey, and (ii) for the photometric redshift calibration survey which is required to achieve weak lensing tomography with great accuracy. They will be publicly accessible at http://lamwws.oamp.fr/cosmowiki/RealisticSpectroPhotCat, or by request to the first author of this paper.
- ID:
- ivo://CDS.VizieR/J/ApJ/901/93
- Title:
- Model atmosphere analysis of hot WDs from SDSS DR12
- Short Name:
- J/ApJ/901/93
- Date:
- 18 Feb 2022 00:21:32
- Publisher:
- CDS
- Description:
- As they evolve, white dwarfs undergo major changes in surface composition, a phenomenon known as spectral evolution. In particular, some stars enter the cooling sequence with helium atmospheres (type DO) but eventually develop hydrogen atmospheres (type DA), most likely through the upward diffusion of residual hydrogen. Our empirical knowledge of this process remains scarce: the fractions of white dwarfs that are born helium rich and that experience the DO-to-DA transformation are poorly constrained. We tackle this issue by performing a detailed model-atmosphere investigation of 1806 hot (Teff>=30000K) white dwarfs observed spectroscopically by the Sloan Digital Sky Survey. We first introduce our new generations of model atmospheres and theoretical cooling tracks, both appropriate for hot white dwarfs. We then present our spectroscopic analysis, from which we determine the atmospheric and stellar parameters of our sample objects. We find that ~24% of white dwarfs begin their degenerate life as DO stars, among which ~2/3 later become DA stars. We also infer that the DO-to-DA transition occurs at substantially different temperatures (75000K>Teff>30000K) for different objects, implying a broad range of hydrogen content within the DO population. Furthermore, we identify 127 hybrid white dwarfs, including 31 showing evidence of chemical stratification, and we discuss how these stars fit in our understanding of the spectral evolution. Finally, we uncover significant problems in the spectroscopic mass scale of very hot (Teff>60000K) white dwarfs.
- ID:
- ivo://CDS.VizieR/J/A+A/550/A103
- Title:
- Model 1D (LHD) and 3D (CO5BOLD) spectra
- Short Name:
- J/A+A/550/A103
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- To derive space velocities of stars along the line of sight from wavelength shifts in stellar spectra requires accounting for a number of second-order effects. For most stars, gravitational redshifts, convective blueshifts, and transverse stellar motion are the dominant contributors. We provide theoretical corrections for the net velocity shifts due to convection expected for the measurements from the Gaia Radial Velocity Spectrometer (RVS). We used a set of three-dimensional time-dependent simulations of stellar surface convection computed with CO5BOLD to calculate spectra of late-type stars in the Gaia RVS range and to infer the net velocity offset that convective motions will induce in radial velocities derived by cross-correlation. The net velocity shifts derived by cross-correlation depend both on the wavelength range and spectral resolution of the observations. Convective shifts for Gaia RVS observations are less than 0.1km/s for late-K-type stars, and they increase with stellar mass, reaching about 0.3km/s or more for early F-type dwarfs. This tendency is the result of an increase with effective temperature in both temperature and velocity fluctuations in the line-forming region. Our simulations also indicate that the net RVS convective shifts can be positive (i.e. redshifts) in some cases. Overall, the blueshifts weaken slightly with increasing surface gravity, and are enhanced at low metallicity. Gravitational redshifts amount up to 0.7km/s and dominate convective blueshifts for dwarfs, but become much weaker for giants.
- ID:
- ivo://CDS.VizieR/J/MNRAS/505/979
- Title:
- Model spectra for identifying age spreads
- Short Name:
- J/MNRAS/505/979
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- In this third paper of a series on the precision of obtaining ages of stellar populations using the full spectrum fitting technique, we examine the precision of this technique in deriving possible age spreads within a star cluster. We test how well an internal age spread can be resolved as a function of cluster age, population mass fraction, and signal-to-noise (S/N) ratio. For this test, the two ages (Age (SSP1) and Age (SSP2)) are free parameters along with the mass fraction of SSP1. We perform the analysis on 118,800 mock star clusters covering all ages in the range 6.8<log(age/yr)<10.2, with mass fractions from 10% to 90% for two age gaps (0.2dex and 0.5dex). Random noise is added to the model spectra to achieve S/N ratios between 50 to 100 per wavelength pixel. We find that the mean of the derived Age (SSP1) generally matches the real Age (SSP1) to within 0.1dex up to ages around log(age/yr)=9.5. The precision decreases for log(age/yr)>9.6 for any mass fraction or S/N, due to the similarity of SED shapes for those ages. In terms of the recovery of age spreads, we find that the derived age spreads are often larger than the real ones, especially for log(age/yr)<8.0 and high mass fractions of SSP1. Increasing the age gap in the mock clusters improves the derived parameters, but Age (SSP2) is still overestimated for the younger ages.
- ID:
- ivo://CDS.VizieR/J/A+A/558/A131
- Title:
- Model spectra of hot stars at the pre-SN stage
- Short Name:
- J/A+A/558/A131
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the fundamental properties of core-collapse Supernova (SN) progenitors from single stars at solar metallicity. We combine Geneva stellar evolutionary models with initial masses of Mini=20-120M_{sun}_ with atmospheric/wind models using CMFGEN. We provide synthetic photometry and high-resolution spectra of hot stars at the pre-SN stage. For Mini=9-20M_{sun}_, we supplement our analysis using publicly available MARCS model atmospheres of RSGs. We employ observational criteria of spectroscopic classification and find that massive stars, depending on Mini and rotation, end their lives as red supergiants (RSG), yellow hypergiants (YHG), luminous blue variables (LBV), and Wolf-Rayet (WR) stars of the WN and WO spectral types. For rotating models, we obtain the following types of SN progenitors: WO1-3 (Mini<=32M_{sun}_), WN10-11 (25<Mini< 32M_{sun}_), LBV (20<=Mini<25M_{sun}_), G1 Ia+ (18<Mini<20M_{sun}_), and RSGs (9<=Mini<=18M_{sun}_). For non-rotating models, we find spectral types WO1-3 (Mini>40M_{sun}_), WN7-8 (25<Mini<=40M_{sun}_), WN11h/LBV (20<Mini<=25M_{sun}_), and RSGs (9<=Mini<=20M_{sun}_). Our rotating models indicate that SN IIP progenitors are all RSG, SN IIL/b progenitors are 56% LBVs and 44% YHGs, SN Ib progenitors are 96% WN10-11 and 4% WOs, and SN Ic progenitors are all WO stars. We find that not necessarily the most massive and luminous SN progenitors are the brighter ones in a given filter. We show that SN IIP progenitors (RSGs) are bright in the RIJHK_S filters and faint in the UB filters. SN IIL/b progenitors (LBVs and YHGs), and SN Ib progenitors (WNs) are relatively bright in optical/IR filters, while SN Ic progenitors (WOs) are faint in all optical filters. We argue that SN Ib and Ic progenitors from single stars should be undetectable in the available pre-explosion images with the current magnitude limits, in agreement with observational results.
- ID:
- ivo://CDS.VizieR/J/A+A/574/A108
- Title:
- Molecular absorption lines in PKS 1830-211
- Short Name:
- J/A+A/574/A108
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Based on measurements with the Effelsberg 100-m telescope, a multiline study of molecular species is presented toward the southwestern source of the gravitational lens system PKS 1830-211, which is by far the best known target for studying molecular gas in absorption at intermediate redshift. Determining line parameters and optical depths and performing large velocity gradient radiative transfer calculations, the aims of this study are (1) to evaluate physical parameters of the absorbing foreground gas at z~0.89, in particular its homogeneity, and (2) to monitor the spectroscopic time variability caused by fluctuations in the z~2.5 background continuum source.
- ID:
- ivo://CDS.VizieR/J/other/RAA/20.115
- Title:
- Molecular clumps CO, HCO and HCN data
- Short Name:
- J/other/RAA/20.1
- Date:
- 19 Jan 2022 00:26:13
- Publisher:
- CDS
- Description:
- Gravitational accretion accumulates the original mass. This process is crucial for us to understand the initial phases of star formation. Using the specific infall profiles in optically thick and thin lines, we searched the clumps with infall motion from the Milky Way Imaging Scroll Painting (MWISP) CO data in previous work. In this study, we selected 133 sources as a sub-sample for further research and identification. The excitation temperatures of these sources are between 7.0 and 38.5K, while the H_2_ column densities are between 10^21^ and 10^23^cm^-2^. We have observed optically thick lines HCO+(1-0) and HCN(1-0) using the DLH 13.7-m telescope, and found 56 sources with a blue profile and no red profile in these two lines, which are likely to have infall motions, with a detection rate of 42%. This suggests that using CO data to restrict the sample can effectively improve the infall detection rate. Among these confirmed infall sources are 43 associated with Class 0/I young stellar objects (YSOs), and 13 which are not. These 13 sources are probably associated with the sources in the earlier evolutionary stage. In comparison, the confirmed sources that are associated with Class 0/I YSOs have higher excitation temperatures and column densities, while the other sources are colder and have lower column densities. Most infall velocities of the sources that we confirmed are between 10^-1^ to 100km/s, which is consistent with previous studies.