- ID:
- ivo://CDS.VizieR/J/AJ/159/290
- Title:
- RVs of 12 spectroscopic binaries M-dwarfs
- Short Name:
- J/AJ/159/290
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the spectroscopic orbits of 11 nearby, mid-to-late M dwarf binary systems in a variety of configurations: 2 single-lined binaries (SB1s), 7 double-lined binaries (SB2s), 1 double-lined triple (ST2), and 1 triple-lined triple (ST3). Eight of these orbits are the first published for these systems, while five are newly identified multiples. We obtained multi-epoch, high-resolution spectra with the TRES instrument on the 1.5m Tillinghast Reflector at the Fred Lawrence Whipple Observatory located on Mt. Hopkins in AZ. Using the TiO molecular bands at 7065-7165{AA}, we calculated radial velocities for these systems, from which we derived their orbits. We find LHS 1817 to have in a 7hr period a companion that is likely a white dwarf, due to the ellipsoidal modulation we see in our MEarth-North light-curve data. We find G123-45 and LTT11586 to host companions with minimum masses of 41MJup and 44MJup with orbital periods of 35 and 15days, respectively. We find 2MA0930+0227 to have a rapidly rotating stellar companion in a 917 day orbital period. GJ268, GJ1029, LP734-34, GJ1182, G258-17, and LTT7077are SB2s with stellar companions with orbital periods of 10, 96, 34, 154, 5, and 84days; LP655-43 is an ST3 with one companion in an 18day orbital period and an outer component in a longer undetermined period. In addition, we present radial velocities for both components of L870-44AB and for the outer components of LTT11586 and LP655-43.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/475/1609
- Title:
- RV variability in NGC 2516 and NGC 2422
- Short Name:
- J/MNRAS/475/1609
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present multi-epoch, high-dispersion, optical spectra obtained with the Michigan/Magellan Fiber System of 126 and 125 Sun-like stars in the young clusters NGC 2516 (141Myr) and NGC 2422 (73Myr). We determine stellar properties including radial velocity (RV), Teff, [Fe/H], [{alpha}/Fe], and the line-of-sight rotation rate, v_r_sin(i), from these spectra. Our median RV precision of 80m/s on individual epochs that span a temporal baseline of 1.1yr enables us to investigate membership, stellar binarity, and search for sub-stellar companions. We determine membership probabilities and RV variability probabilities for our sample along with candidate companion orbital periods for a select subset of stars. We identify 81 RV members in NGC 2516, 27 spectroscopic binaries (17 previously identified as photometric binaries), and 16 other stars that show significant RV variability after accounting for average stellar jitter found to be at the 74m/s level. In NGC 2422 we identify 57 members, 11 spectroscopic binaries, and 3 other stars that show significant RV variability after accounting for an average jitter of 138m/s. We use Monte Carlo simulations to verify our stellar jitter measurements, determine the proportion of exoplanets and stellar companions to which we are sensitive, and estimate companion mass limits for our targets. We also report mean cluster metallicity, velocity, and velocity dispersion based on our member targets and identify 58 non-member stars as RV variables - 24 of which have RV amplitudes that imply stellar or brown-dwarf mass companions. Finally, we note the discovery of a separate RV clustering of stars in our NGC 2422 sample.
- ID:
- ivo://CDS.VizieR/J/ApJ/877/44
- Title:
- RV variability in SDSS dwarf carbon stars
- Short Name:
- J/ApJ/877/44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Dwarf carbon (dC) stars (main-sequence stars showing carbon molecular bands) were initially thought to be an oxymoron because only asymptotic giant branch (AGB) stars dredge carbon into their atmospheres. Mass transfer from a former AGB companion that has since faded to a white dwarf seems the most likely explanation. Indeed, a few types of giants known to show anomalous abundances- notably, the CH, Ba and CEMP-s stars-are known to have a high binary frequency. The dC stars may be the enhanced-abundance progenitors of most, if not all of these systems, but this requires demonstrating a high binary frequency for dCs. Here, for a sample of 240 dC stars targeted for repeat spectroscopy by the SDSS-IV's Time Domain Spectroscopic Survey, we analyze radial velocity (RV) variability to constrain the binary frequency and orbital properties. A handful of dC systems show large velocity variability (>100km/s). We compare the dCs to a control sample with a similar distribution of magnitude, color, proper motion, and parallax. Using Markov chain Monte Carlo methods, we use the measured {Delta}RV distribution to estimate the binary fraction and the separation distribution assuming both a unimodal and bimodal distribution. We find the dC stars have an enhanced binary fraction of 95%, consistent with them being products of mass transfer. These models result in mean separations of less than 1 au corresponding to periods on the order of 1 yr. Our results support the conclusion that dC stars form from close binary systems via mass transfer.
2194. RW Aur spectra
- ID:
- ivo://CDS.VizieR/J/A+A/440/595
- Title:
- RW Aur spectra
- Short Name:
- J/A+A/440/595
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of the classical T Tauri star RW Aur A, based on 77 echelle spectra obtained at Lick Observatory over a decade of observations. RW Aur, which has a higher than average mass accretion rate among T Tauri stars, exhibits permitted (Halpha, Hbeta, Ca II, He I, NaD) and forbidden ([OI]6300{AA}) emission lines with strong variability. The permitted lines display multiple periodicities over the years, often with variable accretion (redshifted) and outflow (blueshifted) absorption components, implying that both processes are active and changing in this system. The broad components of the different emission lines exhibit correlated behavior, indicating a common origin for all of them. We compute simple magnetospheric accretion and disk-wind Halpha, Hbeta and NaD line profiles for RW Aur. The observed Balmer emission lines do not have magnetospheric accretion line profiles. Our modeling indicates that the wind contribution to these line profiles is very important and must be taken into account. Our results indicate that the Halpha, Hbeta and NaD observed line profiles of RW Aur are better reproduced by collimated disk-winds starting from a small region near the disk inner radius.
- ID:
- ivo://CDS.VizieR/J/A+A/574/A121
- Title:
- RXJ2314.9+2243 from radio to X-rays
- Short Name:
- J/A+A/574/A121
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Radio-loud narrow-line type 1 galaxies provide us with a fresh look at the blazar phenomenon, the causes of radio loudness, and the physics of jet formation. We present a multi-wavelength study of the radio-loud narrow-line type 1 quasar RX J2314.9+2243, which exhibits some remarkable multi-wavelength properties. It is among the few radio-loud narrow-line type 1 galaxies, with a tentative {gamma}-ray detection, is luminous in the infrared, and shows an exceptionally broad and blueshifted [OIII]{lambda}5007 emission-line component. In order to understand the nature of this source, we have obtained optical, UV, X-ray, and radio observations of RX J2314.9+2243.
- ID:
- ivo://CDS.VizieR/J/A+A/598/A135
- Title:
- RX J0503.9-2854 spectral energy distribution
- Short Name:
- J/A+A/598/A135
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In the line-of-sight toward the DO-type white dwarf RX J0503.9-2854, the density of the interstellar medium (ISM) is very low, and thus the contamination of the stellar spectrum almost negligible. This allows us to identify many metal lines in a wide wavelength range from the extreme ultraviolet to the near infrared. In previous spectral analyses, many metal lines in the ultraviolet spectrum of RX J0503.9-2854 have been identified. A complete line list of observed and identified lines is presented here. We compared synthetic spectra that had been calculated from model atmospheres in non-local thermodynamical equilibrium, with observations. In total, we identified 1272 lines (279 of them were newly assigned) in the wavelength range from the extreme ultraviolet to the near infrared. 287 lines remain unidentified. A close inspection of the EUV shows that still no good fit to the observed shape of the stellar continuum flux can be achieved although He, C, N, O, Al, Si, P, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Cr, Ni Zn, Ga, Ge, As, Kr, Zr, Mo, Sn, Xe, and Ba are included in the stellar atmosphere models.
- ID:
- ivo://CDS.VizieR/J/A+A/587/A102
- Title:
- 1RXSJ180408.9-342058 spectrum
- Short Name:
- J/A+A/587/A102
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a detailed near-infrared/optical/UV study of the transient low-mass X-ray binary 1RXS J180408.9-342058 performed during its 2015 outburst, which is aimed at determining the nature of its companion star. We obtained three optical spectra (R~1000) at the 2.1m San Pedro Martir Observatory telescope (Mexico). We performed optical and NIR photometric observations with both the REM telescope and the New Technology Telescope (NTT) in La Silla. We obtained optical and UV observations from the Swift archive. Finally, we performed optical polarimetry of the source using the EFOSC2 instrument mounted on the NTT.
- ID:
- ivo://CDS.VizieR/J/A+A/604/A128
- Title:
- S abundances for 1301 stars from GES
- Short Name:
- J/A+A/604/A128
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Due to their volatile nature, when sulphur and zinc are observed in external galaxies, their determined abundances represent the gas-phase abundances in the interstellar medium. This implies that they can be used as tracers of the chemical enrichment of matter in the Universe at high redshift. Comparable observations in stars are more difficult and, until recently, plagued by small number statistics. We wish to exploit the Gaia ESO Survey (GES) data to study the behaviour of sulphur and zinc abundances of a large number of Galactic stars, in a homogeneous way. By using the UVES spectra of the GES sample, we are able to assemble a sample of 1301 Galactic stars, including stars in open and globular clusters in which both sulphur and zinc were measured. We confirm the results from the literature that sulphur behaves as an alpha-element. We find a large scatter in [Zn/Fe] ratios among giant stars around solar metallicity. The lower ratios are observed in giant stars at Galactocentric distances less than 7.5kpc. No such effect is observed among dwarf stars, since they do not extend to that radius. Given the sample selection, giants and dwarfs are observed at different Galactic locations, and it is plausible, and compatible with simple calculations, that Zn-poor giants trace a younger population more polluted by SN Ia yields. It is necessary to extend observations in order to observe both giants and dwarfs at the same Galactic location. Further theoretical work on the evolution of zinc is also necessary.
- ID:
- ivo://CDS.VizieR/J/ApJ/872/58
- Title:
- Sagittarius stream stars with APOGEE obs.
- Short Name:
- J/ApJ/872/58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey provides precise chemical abundances of 18 chemical elements for ~176000 red giant stars distributed over much of the Milky Way Galaxy (MW), and includes observations of the core of the Sagittarius dwarf spheroidal galaxy (Sgr). The APOGEE chemical abundance patterns of Sgr have revealed that it is chemically distinct from the MW in most chemical elements. We employ a k-means clustering algorithm to six-dimensional chemical space defined by [(C+N)/Fe], [O/Fe], [Mg/Fe], [Al/Fe], [Mn/Fe], and [Ni/Fe] to identify 62 MW stars in the APOGEE sample that have Sgr-like chemical abundances. Of the 62 stars, 35 have Gaia kinematics and positions consistent with those predicted by N-body simulations of the Sgr stream, and are likely stars that have been stripped from Sgr during the last two pericenter passages (<2Gyr ago). Another 20 of the 62 stars exhibit chemical abundances indistinguishable from the Sgr stream stars, but are on highly eccentric orbits with median rapo ~25kpc. These stars are likely the "accreted" halo population thought to be the result of a separate merger with the MW 8-11 Gyr ago. We also find one hypervelocity star candidate. We conclude that Sgr was enriched to [Fe/H]~-0.2 before its most recent pericenter passage. If the "accreted halo" population is from one major accretion event, then this progenitor galaxy was enriched to at least [Fe/H]~-0.6, and had a similar star formation history to Sgr before merging.
- ID:
- ivo://CDS.VizieR/J/A+A/601/A32
- Title:
- 10 SALT spectra of HE 0435-4312
- Short Name:
- J/A+A/601/A32
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The MgII emission line is visible in the optical band for intermediate redshift quasars (0.4<z<1.6) and it is thus an extremely important tool to measure the black hole mass and to understand the structure of the Broad Line Region. We aim to determine the substructure and the variability of the MgII line with the aim to identify which part of the line comes from a medium in Keplerian motion. Using the Southern African Large Telescope (SALT) with the Robert Stobie Spectrograph (RSS) we performed ten spectroscopic observations of quasar HE 0435-4312 (z=1.2231) over a period of three years (Dec 23/24, 2012 to Dec 7/8, 2015). Both the MgII line and the FeII pseudo-continuum increase with time. We clearly detect the systematic shift of the MgII line with respect to the FeII over the years, corresponding to the acceleration of 104+/-14km/s/year in the quasar rest frame. The MgII line shape is clearly non-Gaussian but single-component, and the increase in line equivalent width and line shift is not accompanied with significant evolution of the line shape. We analyse the conditions in the MgII and FeII formation region and we note that the very large difference in the covering factor and the turbulent velocity also support the conclusion that the two regions are spatially separated. The measured acceleration of the line systematic shift is too large to connect it with the orbital motion at a distance of the Broad Line Region (BLR) in this source. It may imply a precessing inner disk illuminating the BLR. Further monitoring is still needed to better constrain the variability mechanism.