- ID:
- ivo://CDS.VizieR/VII/286
- Title:
- SDSS quasar catalog, fourteenth data release
- Short Name:
- VII/286
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the data release 14 Quasar catalog (DR14Q) from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV). This catalog includes all SDSS-IV/eBOSS objects that were spectroscopically targeted as quasar candidates and that are confirmed as quasars via a new automated procedure combined with a partial visual inspection of spectra, have luminosities Mi [z=2] < -20.5 (in a {LAMBDA} CDM cosmology with H_0_=70km/s/Mpc, {OMEGA}_M_=0.3, and {OMEGA}_{LAMBDA}_=0.7), and either display at least one emission line with a full width at half maximum larger than 500km/s or, if not, have interesting/complex absorption features. The catalog also includes previously spectroscopically-confirmed quasars from SDSS-I, II, and III. The catalog contains 526356 quasars (144046 are new discoveries since the beginning of SDSS-IV) detected over 9376 deg^2^ (2044 deg^2^ having new spectroscopic data available) with robust identification and redshift measured by a combination of principal component eigenspectra. The catalog is estimated to have about 0.5% contamination. Redshifts are provided for the MgII emission line. The catalog identifies 21877 broad absorption line quasars and lists their characteristics. For each object, the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03mag. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra, covering the wavelength region 3610-10140{AA} at a spectral resolution in the range 1300<R<2500, can be retrieved from the SDSS Science Archiver Server.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/VII/289
- Title:
- SDSS quasar catalog, sixteenth data release (DR16Q)
- Short Name:
- VII/289
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the final Sloan Digital Sky Survey IV (SDSS-IV) quasar catalog from Data Release 16 of the extended Baryon Oscillation Spectroscopic Survey (eBOSS). This catalog comprises the largest selection of spectroscopically confirmed quasars to date. The full catalog includes two subcatalogs (the current versions are DR16Q_v4 and DR16Q_Superset_v3 at http://data.sdss.org/sas/dr16/eboss/qso/DR16Q): a "superset" of all SDSS-IV/eBOSS objects targeted as quasars containing 1,440,615 observations and a quasar-only catalog containing 750,414 quasars, including 225,082 new quasars appearing in an SDSS data release for the first time, as well as known quasars from SDSS-I/II/III. We present automated identification and redshift information for these quasars alongside data from visual inspections for 320,161 spectra. The quasar-only catalog is estimated to be 99.8% complete with 0.3%-1.3% contamination. Automated and visual inspection redshifts are supplemented by redshifts derived via principal component analysis and emission lines. We include emission-line redshifts for H{alpha}, H{beta}, MgII, CIII], CIV, and Ly{alpha}. Identification and key characteristics generated by automated algorithms are presented for 99,856 broad absorption-line quasars and 35,686 damped Lyman alpha quasars. In addition to SDSS photometric data, we also present multiwavelength data for quasars from the Galaxy Evolution Explorer, UKIDSS, the Wide-field Infrared Survey Explorer, FIRST, ROSAT/2RXS, XMM-Newton, and Gaia.
- ID:
- ivo://CDS.VizieR/VII/270
- Title:
- SDSS quasar catalog: tenth data release
- Short Name:
- VII/270
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the Data Release 10 Quasar (DR10Q) catalog from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. The catalog includes all BOSS objects that were targeted as quasar candidates during the first 2.5 years of the survey and that are confirmed as quasars via visual inspection of the spectra, have luminosities Mi[z=2]<-20.5 (in a LCDM cosmology with H_0_=70km/s/Mpc, Om=0.3, and Ol=0.7), and either display at least one emission line with a full width at half maximum (FWHM) larger than 500km/s or, if not, have interesting/complex absorption features. The catalog also includes known quasars (mostly from SDSS-I and II) that were reobserved by BOSS. The catalog contains 166,583 quasars (74,454 are new discoveries since SDSS-DR9) detected over 6,373deg^2^ with robust identification and redshift measured by a combination of principal component eigenspectra. The number of quasars with z>2.15 (117,668) is ~5 times greater than the number of z>2.15 quasars known prior to BOSS. Redshifts and FWHMs are provided for the strongest emission lines (CIV, CIII, MgII). The catalog identifies 16,461 broad absorption line quasars and gives their characteristics. For each object, the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03mag and information on the optical morphology and selection method. The catalog also contains X-ray, ultraviolet, near- infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3,600-10,500{AA} at a spectral resolution in the range 1,300<R<2,500; the spectra can be retrieved from the SDSS Catalog Archive Server. We also provide a supplemental list of an additional 2,376 quasars that have been identified among the galaxy targets of the SDSS-III/BOSS.
- ID:
- ivo://CDS.VizieR/VII/279
- Title:
- SDSS quasar catalog: twelfth data release
- Short Name:
- VII/279
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the Data Release 12 Quasar catalog (DR12Q) from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky SurveyIII. This catalog includes all SDSS-III/BOSS objects that were spectroscopically targeted as quasar candidates during the full survey and that are confirmed as quasars via visual inspection of the spectra, have luminosities M_i_[z=2]< -20.5 (in a {Lambda}CDM cosmology with H_0_=70km/s/Mpc, {Omega}_M_=0.3, and {Omega}_{Lambda}_=0.7), and either display at least one emission line with a full width at half maximum (FWHM) larger than 500km/s or, if not, have interesting/complex absorption features. The catalog also includes previously known quasars (mostly from SDSS-I andII) that were reobserved by BOSS. The catalog contains 297 301 quasars (272 026 are new discoveries since the beginning of SDSS-III) detected over 9376deg^2^ with robust identification and redshift measured by a combination of principal component eigenspectra. The number of quasars with z>2.15 (184 101, of which 167 742 are new discoveries) is about an order of magnitude greater than the number of z>2.15 quasars known prior to BOSS. Redshifts and FWHMs are provided for the strongest emission lines (CIV, CIII], MgII). The catalog identifies 29 580 broad absorption line quasars and lists their characteristics. For each object, the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03mag together with some information on the optical morphology and the selection criteria. When available, the catalog also provides information on the optical variability of quasars using SDSS and Palomar Transient Factory multi-epoch photometry. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra, covering the wavelength region 3600-10 500{AA} at a spectral resolution in the range 1300<R<2500, can be retrieved from the SDSS Catalog Archive Server. We also provide a supplemental list of an additional 4841 quasars that have been identified serendipitously outside of the superset defined to derive the main quasar catalog.
- ID:
- ivo://CDS.VizieR/J/AJ/143/119
- Title:
- SDSS Quasar Lens Search. V. Final catalog
- Short Name:
- J/AJ/143/119
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the final statistical sample of lensed quasars from the Sloan Digital Sky Survey (SDSS) Quasar Lens Search (SQLS). The well-defined statistical lens sample consists of 26 lensed quasars brighter than i=19.1 and in the redshift range of 0.6<z<2.2 selected from 50826 spectroscopically confirmed quasars in the SDSS Data Release 7 (DR7), where we restrict the image separation range to 1"<{theta}<20" and the i-band magnitude differences in two images to be smaller than 1.25mag. The SDSS-DR7 quasar catalog also contains 36 additional lenses identified with various techniques. In addition to these lensed quasars, we have identified 81 pairs of quasars from follow-up spectroscopy, 26 of which are physically associated binary quasars. The statistical lens sample covers a wide range of image separations, redshifts, and magnitudes, and therefore is suitable for systematic studies of cosmological parameters and surveys of the structure and evolution of galaxies and quasars.
- ID:
- ivo://CDS.VizieR/J/ApJ/789/140
- Title:
- SDSS quasars balmer emission lines
- Short Name:
- J/ApJ/789/140
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A small fraction of quasars have long been known to show bulk velocity offsets (of a few hundred to thousands of km/s) in the broad Balmer lines with respect to the systemic redshift of the host galaxy. Models to explain these offsets usually invoke broad-line region gas kinematics/asymmetry around single black holes (BHs), orbital motion of massive (~sub-parsec (sub-pc)) binary black holes (BBHs), or recoil BHs, but single-epoch spectra are unable to distinguish between these scenarios. The line-of-sight (LOS) radial velocity (RV) shifts from long-term spectroscopic monitoring can be used to test the BBH hypothesis. We have selected a sample of 399 quasars with kinematically offset broad H{beta} lines from the Sloan Digital Sky Survey (SDSS) Seventh Data Release quasar catalog, and have conducted second-epoch optical spectroscopy for 50 of them. Combined with the existing SDSS spectra, the new observations enable us to constrain the LOS RV shifts of broad H{beta} lines with a rest-frame baseline of a few years to nearly a decade. While previous work focused on objects with extreme velocity offset (>10^3^ km/s), we explore the parameter space with smaller (a few hundred km/s) yet significant offsets (99.7% confidence). Using cross-correlation analysis, we detect significant (99% confidence) radial accelerations in the broad H{beta} lines in 24 of the 50 objects, of ~10-200 km/s/yr with a median measurement uncertainty of ~10 km/s/yr, implying a high fraction of variability of the broad-line velocity on multi-year timescales. We suggest that 9 of the 24 detections are sub-pc BBH candidates, which show consistent velocity shifts independently measured from a second broad line (either H{alpha} or Mg II) without significant changes in the broad-line profiles. Combining the results on the general quasar population studied in Paper I (Shen et al. 2013ApJ...775...49S), we find a tentative anti-correlation between the velocity offset in the first-epoch spectrum and the average acceleration between two epochs, which could be explained by orbital phase modulation when the time separation between two epochs is a non-negligible fraction of the orbital period of the motion causing the line displacement. We discuss the implications of our results for the identification of sub-pc BBH candidates in offset-line quasars and for the constraints on their frequency and orbital parameters.
- ID:
- ivo://CDS.VizieR/J/ApJ/887/38
- Title:
- SDSS RM Project: CIV lags & LCs from 4yrs of data
- Short Name:
- J/ApJ/887/38
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present reverberation-mapping (RM) lags and black hole mass measurements using the CIV{lambda}1549 broad emission line from a sample of 348 quasars monitored as a part of the Sloan Digital Sky Survey RM Project. Our data span four years of spectroscopic and photometric monitoring for a total baseline of 1300 days, allowing us to measure lags up to ~750days in the observed frame (this corresponds to a rest-frame lag of ~300days in a quasar at z=1.5 and ~190days at z=3). We report significant time delays between the continuum and the CIV{lambda}1549 emission line in 48 quasars, with an estimated false-positive detection rate of 10%. Our analysis of marginal lag measurements indicates that there are on the order of ~100 additional lags that should be recoverable by adding more years of data from the program. We use our measurements to calculate black hole masses and fit an updated CIV radius-luminosity relationship. Our results significantly increase the sample of quasars with CIV RM results, with the quasars spanning two orders of magnitude in luminosity toward the high-luminosity end of the CIV radius-luminosity relation. In addition, these quasars are located at some of the highest redshifts (z~1.4-2.8) of quasars with black hole masses measured with RM.
- ID:
- ivo://CDS.VizieR/J/ApJ/872/21
- Title:
- SDSS RM project: <10day CIV BAL variability
- Short Name:
- J/ApJ/872/21
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We systematically investigate short-timescale (<10 day rest-frame) CIV broad absorption-line (BAL) variability to constrain quasar-wind properties and provide insights into BAL-variability mechanisms in quasars. We employ data taken by the Sloan Digital Sky Survey Reverberation Mapping project, as the rapid cadence of these observations provides a novel opportunity to probe BAL variability on shorter rest-frame timescales than have previously been explored. In a sample of 27 quasars with a median of 58 spectral epochs per quasar, we have identified 15 quasars (55_-14_^+18^%), 19 of 37 CIV BAL troughs (51_-12_^+15^%), and 54 of 1460 epoch pairs (3.7%+/-0.5%) that exhibit significant CIV BAL equivalent-width variability on timescales of less than 10 days in the quasar rest frame. These frequencies indicate that such variability is common among quasars and BALs, though somewhat rare among epoch pairs. Thus, models describing BALs and their behavior must account for variability on timescales down to less than a day in the quasar rest frame. We also examine a variety of spectral characteristics and find that, in some cases, BAL variability is best described by ionization-state changes, while other cases are more consistent with changes in covering fraction or column density. We adopt a simple model to constrain the density and radial distance of two outflows appearing to vary by ionization-state changes, yielding outflow density lower limits consistent with previous work.
- ID:
- ivo://CDS.VizieR/J/ApJ/851/21
- Title:
- SDSS RM project first year of observations
- Short Name:
- J/ApJ/851/21
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present reverberation mapping results from the first year of combined spectroscopic and photometric observations of the Sloan Digital Sky Survey Reverberation Mapping Project. We successfully recover reverberation time delays between the g+i band emission and the broad H{beta} emission line for a total of 44 quasars, and for the broad H{alpha} emission line in 18 quasars. Time delays are computed using the JAVELIN and CREAM software and the traditional interpolated cross-correlation function (ICCF): using well-defined criteria, we report measurements of 32 H{beta} and 13 H{alpha} lags with JAVELIN, 42 H{beta} and 17 H{alpha} lags with CREAM, and 16 H{beta} and eight H{alpha} lags with the ICCF. Lag values are generally consistent among the three methods, though we typically measure smaller uncertainties with JAVELIN and CREAM than with the ICCF, given the more physically motivated light curve interpolation and more robust statistical modeling of the former two methods. The median redshift of our H{beta}-detected sample of quasars is 0.53, significantly higher than that of the previous reverberation mapping sample. We find that in most objects, the time delay of the H{alpha} emission is consistent with or slightly longer than that of H{beta}. We measure black hole masses using our measured time delays and line widths for these quasars. These black hole mass measurements are mostly consistent with expectations based on the local M_BH_-{sigma}* relationship, and are also consistent with single-epoch black hole mass measurements. This work increases the current sample size of reverberation-mapped active galaxies by about two- thirds and represents the first large sample of reverberation mapping observations beyond the local universe (z<0.3).
- ID:
- ivo://CDS.VizieR/J/ApJ/882/4
- Title:
- SDSS-RM project: H{alpha}, H{beta} & MgII lines
- Short Name:
- J/ApJ/882/4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The width of the broad emission lines in quasars is commonly characterized by either the FWHM or the square root of the second moment of the line profile ({sigma}line) and used as an indicator of the virial velocity of the broad-line region (BLR) in the estimation of black hole (BH) mass. We measure FWHM and {sigma}line for H{alpha}, H{beta}, and MgII broad lines in both the mean and rms spectra of a large sample of quasars from the Sloan Digital Sky Survey Reverberation Mapping project. We introduce a new quantitative recipe to measure {sigma}line that is reproducible, is less susceptible to noise and blending in the wings, and scales with the intrinsic width of the line. We compare the four definitions of line width (FWHM and {sigma}line in mean and rms spectra, respectively) for each of the three broad lines and among different lines. There are strong correlations among different width definitions for each line, providing justification for using the line width measured in single-epoch spectroscopy as a virial velocity indicator. There are also strong correlations among different lines, suggesting that alternative lines to H{beta} can be used to estimate virial BH masses. We further investigate the correlations between virial BH masses using different line width definitions and the stellar velocity dispersion of the host galaxies and the dependence of line shape (characterized by the ratio FWHM/{sigma}line) on physical properties of the quasar. Our results provide further evidence that FWHM is more sensitive to the orientation of a flattened BLR geometry than {sigma}line, but the overall comparison between the virial BH mass and host stellar velocity dispersion does not provide conclusive evidence that one particular width definition is significantly better than the others.