- ID:
- ivo://CDS.VizieR/J/AJ/151/11
- Title:
- Taxonomy of potentially hazardous asteroids
- Short Name:
- J/AJ/151/11
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Through their delivery of water and organics, near-Earth objects (NEOs) played an important role in the emergence of life on our planet. However, they also pose a hazard to the Earth, as asteroid impacts could significantly affect our civilization. Potentially hazardous asteroids (PHAs) are those that, in principle, could possibly impact the Earth within the next century, producing major damage. About 1600 PHAs are currently known, from an estimated population of 4700+/-1450. However, a comprehensive characterization of the PHA physical properties is still missing. Here we present spectroscopic observations of 14 PHAs, which we have used to derive their taxonomy, meteorite analogs, and mineralogy. Combining our results with the literature, we investigated how PHAs are distributed as a function of their dynamical and physical properties. In general, the ''carbonaceous'' PHAs seem to be particularly threatening, because of their high porosity (limiting the effectiveness of the main deflection techniques that could be used in space) and low inclination and minimum orbit intersection distance (MOID) with the Earth (favoring more frequent close approaches). V-type PHAs also present low MOID values, which can produce frequent close approaches (as confirmed by the recent discovery of a limited space weathering on their surfaces). We also identified those specific objects that deserve particular attention because of their extreme rotational properties, internal strength, or possible cometary nature. For PHAs and NEOs in general, we identified a possible anti-correlation between the elongation and the rotational period, in the range of P_rot_~5-80hr. This would be compatible with the behavior of gravity-dominated aggregates in rotational equilibrium. For periods >~80-90hr, such a trend stops, possibly under the influence of the YORP effect and collisions. However, the statistics is very low, and further observational and theoretical work is required to characterize such slow rotators.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/433/457
- Title:
- 76 T dwarfs from the UKIDSS LAS
- Short Name:
- J/MNRAS/433/457
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of 76 new T dwarfs from the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). Near-infrared broad- and narrow-band photometry and spectroscopy are presented for the new objects, along with Wide-field Infrared Survey Explorer (WISE) and warm-Spitzer photometry. Proper motions for 128 UKIDSS T dwarfs are presented from a new two epoch LAS proper motion catalogue. We use these motions to identify two new benchmark systems: LHS 6176AB, a T8p+M4 pair and HD 118865AB, a T5.5+F8 pair. Using age constraints from the primaries and evolutionary models to constrain the radii, we have estimated their physical properties from their bolometric luminosity. We compare the colours and properties of known benchmark T dwarfs to the latest model atmospheres and draw two principal conclusions. First, it appears that the H-[4.5] and J-W2 colours are more sensitive to metallicity than has previously been recognized, such that differences in metallicity may dominate over differences in Teff when considering relative properties of cool objects using these colours. Secondly, the previously noted apparent dominance of young objects in the late-T dwarf sample is no longer apparent when using the new model grids and the expanded sample of late-T dwarfs and benchmarks. This is supported by the apparently similar distribution of late-T dwarfs and earlier type T dwarfs on reduced proper motion diagrams that we present. Finally, we present updated space densities for the late-T dwarfs, and compare our values to simulation predictions and those from WISE.
- ID:
- ivo://CDS.VizieR/J/ApJ/562/528
- Title:
- Teff and log(g) of low-metallicity stars
- Short Name:
- J/ApJ/562/528
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We explore the application of artificial neural networks (ANNs) for the estimation of atmospheric parameters (T_eff_, log(g), and [Fe/H]) for Galactic F- and G-type stars. The ANNs are fed with medium-resolution ({Delta}{lambda}~1-2{AA}) nonflux-calibrated spectroscopic observations. From a sample of 279 stars with previous high-resolution determinations of metallicity and a set of (external) estimates of temperature and surface gravity, our ANNs are able to predict T_eff_ with an accuracy of {sigma}(T_eff_)=135-150K over the range 4250K<=T_eff_<=6500K, logg with an accuracy of {sigma}(logg)=0.25-0.30dex over the range 1.0<=logg<=5.0, and [Fe/H] with an accuracy {sigma}([Fe/H])=0.15-0.20dex over the range -4.0<=[Fe/H]<=0.3. Such accuracies are competitive with the results obtained by fine analysis of high-resolution spectra. It is noteworthy that the ANNs are able to obtain these results without consideration of photometric information for these stars. We have also explored the impact of the signal-to-noise ratio (S/N) on the behavior of ANNs and conclude that, when analyzed with ANNs trained on spectra of commensurate S/N, it is possible to extract physical parameter estimates of similar accuracy with stellar spectra having S/N as low as 13. Taken together, these results indicate that the ANN approach should be of primary importance for use in present and future large-scale spectroscopic surveys. The stars that comprise our study are a subset of the calibration stars used in the Beers et al. (1999, Cat. <J/AJ/117/981>) medium-resolution surveys.
- ID:
- ivo://CDS.VizieR/J/ApJ/892/31
- Title:
- Teff and metallicities of M dwarfs in APOGEE DR14
- Short Name:
- J/ApJ/892/31
- Date:
- 07 Mar 2022 13:23:27
- Publisher:
- CDS
- Description:
- M dwarfs have enormous potential for our understanding of structure and formation on both Galactic and exoplanetary scales through their properties and compositions. However, current atmosphere models have limited ability to reproduce spectral features in stars at the coolest temperatures (Teff<4200K) and to fully exploit the information content of current and upcoming large-scale spectroscopic surveys. Here we present a catalog of spectroscopic temperatures, metallicities, and spectral types for 5875 M dwarfs in the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and Gaia-DR2 surveys using The Cannon (Ness+ 2015, J/ApJ/808/16 ; Casey+ 2016, arXiv:1603.03040; Ho+ 2017, J/ApJ/836/5; Behmard+ 2019ApJ...876...68B): a flexible, data-driven spectral-modeling and parameter-inference framework demonstrated to estimate stellar-parameter labels (Teff, logg, [Fe/H], and detailed abundances) to high precision. Using a training sample of 87 M dwarfs with optically derived labels spanning 2860K<Teff<4130K calibrated with bolometric temperatures, and -0.5<[Fe/H]<0.5dex calibrated with FGK binary metallicities, we train a two-parameter model with predictive accuracy (in cross-validation) to 77K and 0.09dex respectively. We also train a one-dimensional spectral classification model using 51 M dwarfs with Sloan Digital Sky Survey optical spectral types ranging from M0 to M6, to predictive accuracy of 0.7 types. We find Cannon temperatures to be in agreement to within 60 K compared to a subsample of 1702 sources with color-derived temperatures, and Cannon metallicities to be in agreement to within 0.08 dex metallicity compared to a subsample of 15 FGK+M or M+M binaries. Finally, our comparison between Cannon and APOGEE pipeline (ASPCAP DR14) labels finds that ASPCAP is systematically biased toward reporting higher temperatures and lower metallicities for M dwarfs.
- ID:
- ivo://CDS.VizieR/J/AN/328/938
- Title:
- Teff/line-depth ratio for ELODIE spectra
- Short Name:
- J/AN/328/938
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The dependence on the temperature of photospheric line-depth ratios (LDRs) in the spectral range 619.0-628.0nm is investigated by using a sample of 174 ELODIE Archive stellar spectra of luminosity class from V to III. The rotational broadening effect on LDRs is also studied. We provide useful calibrations of effective temperature versus LDRs for giant and main sequence stars with 3800<~T_eff_<~6000K and vsini in the range 0-30km/s. We found that, with the exception of very few line pairs, LDRs, measured at a spectral resolution as high as 42000, depend on vsini and that, by neglecting the rotational broadening effect, the T_eff_ determination can be wrong by ~100K in the worst cases.
- ID:
- ivo://CDS.VizieR/J/ApJ/851/26
- Title:
- Teff, metallicity and Ti abundance of M dwarfs
- Short Name:
- J/ApJ/851/26
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications, including studying the chemical evolution of the Galaxy and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres hinders similar analyses of M dwarf stars. Empirically calibrated methods to measure M dwarf metallicity from moderate-resolution spectra are currently limited to measuring overall metallicity and rely on astrophysical abundance correlations in stellar populations. We present a new, empirical calibration of synthetic M dwarf spectra that can be used to infer effective temperature, Fe abundance, and Ti abundance. We obtained high-resolution (R~25000), Y-band (~1{mu}m) spectra of 29 M dwarfs with NIRSPEC on Keck II. Using the PHOENIX stellar atmosphere modeling code (version 15.5), we generated a grid of synthetic spectra covering a range of temperatures, metallicities, and alpha-enhancements. From our observed and synthetic spectra, we measured the equivalent widths of multiple Fe I and Ti I lines and a temperature-sensitive index based on the FeH band head. We used abundances measured from widely separated solar-type companions to empirically calibrate transformations to the observed indices and equivalent widths that force agreement with the models. Our calibration achieves precisions in Teff, [Fe/H], and [Ti/Fe] of 60K, 0.1dex, and 0.05dex, respectively, and is calibrated for 3200K<Teff<4100K, -0.7<[Fe/H]<+0.3, and -0.05<[Ti/Fe]<+0.3. This work is a step toward detailed chemical analysis of M dwarfs at a precision similar to what has been achieved for FGK stars.
- ID:
- ivo://CDS.VizieR/J/A+A/449/583
- Title:
- Temperature effects on spectra of olivine particles
- Short Name:
- J/A+A/449/583
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The absorption spectra of the olivine particles of different Mg/Fe content were measured in the infrared spectral region between 5 and 100{mu}m, while the particles were continuously cooled down to 10K. Measurements independently carried out on different samples of synthetic forsterite, natural olivine, and synthetic fayalite at laboratories in Kyoto and Jena. The positions of the olivine infrared bands were measured for these samples in detail at up to seven individual temperatures in the interval between 300K and 10K. According to the different widths of the olivine bands in different wavelength regions, spectral resolutions of 2, 1, 0.5, 0.25, 0.2, and 0.125cm^-1^ were used in order to measure the band positions with high accuracy.
- ID:
- ivo://CDS.VizieR/J/AJ/162/265
- Title:
- TESS-Keck survey. VI. HIP-97166 radial velocity
- Short Name:
- J/AJ/162/265
- Date:
- 16 Mar 2022 06:42:57
- Publisher:
- CDS
- Description:
- We report the discovery of HIP-97166b (TOI-1255b), a transiting sub-Neptune on a 10.3day orbit around a K0 dwarf 68pc from Earth. This planet was identified in a systematic search of TESS Objects of Interest for planets with eccentric orbits, based on a mismatch between the observed transit duration and the expected duration for a circular orbit. We confirmed the planetary nature of HIP-97166b with ground-based radial-velocity measurements and measured a mass of M_b_=20{+/-}2M{Earth} along with a radius of R_b_=2.7{+/-}0.1R{Earth} from photometry. We detected an additional nontransiting planetary companion with M_c_sini=10{+/-}2M{Earth} on a 16.8day orbit. While the short transit duration of the inner planet initially suggested a high eccentricity, a joint RV-photometry analysis revealed a high impact parameter b=0.84{+/-}0.03 and a moderate eccentricity. Modeling the dynamics with the condition that the system remain stable over >10^5^ orbits yielded eccentricity constraints e_b_=0.16{+/-}0.03 and e_c_<0.25. The eccentricity we find for planet b is above average for the small population of sub-Neptunes with well-measured eccentricities. We explored the plausible formation pathways of this system, proposing an early instability and merger event to explain the high density of the inner planet at 5.3{+/-}0.9g/cc as well as its moderate eccentricity and proximity to a 5:3 mean-motion resonance.
- ID:
- ivo://CDS.VizieR/J/A+A/653/A66
- Title:
- TEXES spectra of Saturn from February 03 2013
- Short Name:
- J/A+A/653/A66
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- The abundance of deuterium in giant planet atmospheres provides constraints on the reservoirs of ices incorporated into these worlds during their formation and evolution. Motivated by discrepancies in the measured deuterium-hydrogen ratio (D/H) on Jupiter and Saturn, we present a new measurement of the D/H ratio in methane for Saturn from ground-based measurements. We analysed a spectral cube (covering 1151-1160cm^-1^ from 6 February 2013) from the Texas Echelon Cross Echelle Spectrograph (TEXES) on NASA's Infrared Telescope Facility (IRTF) where emission lines from both methane and deuterated methane are well resolved. Our estimate of the D/H ratio in stratospheric methane, 1.65(-0.21/+0.27)*10^-5^ is in agreement with results derived from Cassini CIRS and ISO/SWS observations, confirming the unexpectedly low CH3D abundance. Assuming a fractionation factor of 1.34(+/-0.19) we derive a hydrogen D/H of 1.23(-0.23/+0.27)*10^-5^. This value remains lower than previous tropospheric hydrogen D/H measurements of (i) Saturn 2.10(+/-0.13)*10^-5^, (ii) Jupiter 2.6(+/-0.7)*10^-5^ and (iii) the proto-solar hydrogen D/H of 2.1(+/-0.5)*10^-5^, suggesting that the fractionation factor may not be appropriate for stratospheric methane, or that the D/H ratio in Saturn's stratosphere is not representative of the bulk of the planet.
- ID:
- ivo://CDS.VizieR/J/ApJ/728/70
- Title:
- The abundance of boron in diffuse clouds
- Short Name:
- J/ApJ/728/70
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a comprehensive survey of boron abundances in diffuse interstellar clouds from observations made with the Space Telescope Imaging Spectrograph (STIS) of the Hubble Space Telescope. Our sample of 56 Galactic sight lines is the result of a complete search of archival STIS data for the BII{lambda}1362 resonance line, with each detection confirmed by the presence of absorption from OI{lambda}1355, CuII{lambda}1358, and GaII{lambda}1414 (when available) at the same velocity. Five previous measurements of interstellar BII from Goddard High Resolution Spectrograph (GHRS) observations are incorporated in our analysis, yielding a combined sample that more than quadruples the number of sight lines with significant boron detections. Our survey also constitutes the first extensive analysis of interstellar gallium from STIS spectra and expands on previously published results for oxygen and copper. The observations probe both high- and low-density diffuse environments, allowing the density-dependent effects of interstellar depletion to be clearly identified in the gas-phase abundance data for each element.