- ID:
- ivo://CDS.VizieR/J/A+A/615/A117
- Title:
- 55 Cnc geocoronal emission lines template
- Short Name:
- J/A+A/615/A117
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The high-energy X-ray to ultraviolet (XUV) irradiation of close-in planets by their host star influences their evolution and might be responsible for the existence of a population of ultra-short period planets eroded to their bare core. In orbit around a bright, nearby G-type star, the super-Earth 55 Cnc e offers the possibility to address these issues through transit observations at UV wavelengths. We used the Hubble Space Telescope to observe the transit in the far-ultraviolet (FUV) over three epochs in April 2016, January 2017, and February 2017. Together, these observations cover nearly half of the orbital trajectory in between the two quadratures, and reveal significant short- and long-term variability in 55 Cnc chromospheric emission lines. In the last two epochs, we detected a larger flux in the CIII, SiIII, and SiIV lines after the planet passed the approaching quadrature, followed by a flux decrease in the SiIV doublet. In the second epoch these variations are contemporaneous with flux decreases in the SiII and CII doublet. All epochs show flux decreases in the NV doublet as well, albeit at different orbital phases. These flux decreases are consistent with absorption from optically thin clouds of gas, are mostly localized at low and redshifted radial velocities in the star rest frame, and occur preferentially before and during the planet transit. These three points make it unlikely that the variations are purely stellar in origin, yet we show that the occulting material is also unlikely to originate from the planet. We thus tentatively propose that the motion of 55 Cnc e at the fringes of the stellar corona leads to the formation of a cool coronal rain. The inhomogeneity and temporal evolution of the stellar corona would be responsible for the differences between the three visits. Additional variations are detected in the CII doublet in the first epoch and in the OI triplet in all epochs with a different behavior that points toward intrinsic stellar variability. Further observations at FUV wavelengths are required to disentangle definitively between star-planet interactions in the 55 Cnc system and the activity of the star.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/390/1733
- Title:
- CN column densities and excitation temperatures
- Short Name:
- J/MNRAS/390/1733
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyse abundances and rotational temperatures of the interstellar CN molecule. We have calculated the column densities and excitation temperatures of the molecule along 73 lines of sight basing on our original measurements of the B^2^{SIGMA}^+^-X^2^{SIGMA}^+^(0,0) vibrational band recorded in high signal-to-noise ratio spectra and also for 88 directions based on measurements already available in literature. We compare the column densities obtained from different bands of CN molecule available to ground-based instruments. The obtained excitation temperatures in the analysed directions show always an excess over the cosmic microwave background radiation (CMBR) temperature.
- ID:
- ivo://CDS.VizieR/J/A+A/628/A28
- Title:
- 3C 294 NIR images and optical spectra
- Short Name:
- J/A+A/628/A28
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- High redshift radio galaxies are among the most massive galaxies at their redshift, are often found in the centers of proto-clusters of galaxies, and are expected to evolve into the present day massive central cluster galaxies. Thus they are a useful tool to explore structure formation in the young Universe. 3C 294 is a powerful FR II type radio galaxy at z=1.786. Past studies have identified a clumpy structure, possibly indicative of a merging system, as well as tentative evidence that 3C 294 hosts a dual AGN. Due to its proximity to a bright star, it was subject to various adaptive optics imaging studies. In order to distinguish between the various scenarios for 3C 294 we performed deep high-resolution adaptive optics imaging and optical spectroscopy of 3C 294 with the Large Binocular Telescope. We resolve the 3C 294 system into three distinct components separated by a few tenths of an arcsecond on our images. One is compact, the other two are extended, all appear to be non-stellar. The nature of each component is unclear. The latter could be a galaxy with an internal absorption feature, a galaxy merger or two galaxies at different redshifts. We can now uniquely associate the radio source of 3C 294 with one of the extended components. Based on our spectroscopy, we determined a redshift of z=1.784+/-0.001, which is similar to the one previously cited. In addition we found a previously unreported emission line at lambda 6749.4{AA} in our spectra. It is not clear that it originates from 3C 294. It could be the Ne [IV] doublet lambda 2424/2426{AA} at z=1.783, or belong to the compact component at a redshift of z~4.56. We thus can not unambiguously determine whether 3C 294 hosts a dual AGN or a projected pair of AGNs.
- ID:
- ivo://CDS.VizieR/J/A+A/544/A69
- Title:
- CN(1-0) Zeeman observations of NGC 2264-C
- Short Name:
- J/A+A/544/A69
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- From an observational point of view, the role of magnetic fields in star formation remains unclear, and two main theoretical scenarios have been proposed so far to regulate the star-formation processes. The first model assumes that turbulence in star-forming clumps plays a crucial role, and especially that protostellar outflow-driven turbulence is crucial to support cluster-forming clumps; while the second scenario is based on the consideration of a magnetically-supported clump. Previous studies of the NGC 2264-C protocluster indicate that, in addition to thermal pressure, some extra support might effectively act against the gravitational collapse of this cluster- forming clump. We previously showed that this extra support is not due to the numerous protostellar outflows, nor the enhanced turbulence in this protocluster. Here we present the results of the first polarimetric campaign dedicated to quantifying the magnetic support at work in the NGC 2264-C clump. Our Zeeman observations of the CN(1-0) hyperfine lines provide an upper limit to the magnetic field strength Blos<0.6 mG in the protocluster (projected along the line of sight). While these results do not provide sufficiently tight constraints to fully quantify the magnetic support at work in NGC 2264-C, they suggest that, within the uncertainties, the core could be either magnetically super or sub-critical, with the former being more likely.
- ID:
- ivo://CDS.VizieR/J/A+A/630/A130
- Title:
- Co-added spectra of HD127493 and HZ44
- Short Name:
- J/A+A/630/A130
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Hot subluminous stars can be spectroscopically classified as subdwarf B (sdB) and O (sdO) stars. While the latter are predominantly hydrogen deficient, the former are mostly helium deficient. The atmospheres of most sdOs are almost devoid of hydrogen, whereas a small group of hot subdwarf stars of mixed H/He composition exists, showing extreme metal abundance anomalies. Whether such intermediate helium-rich (iHe) subdwarf stars provide an evolutionary link between the dominant classes is an open question. The presence of strong Ge, Sn, and Pb lines in the UV spectrum of HZ44 suggests a strong enrichment of heavy elements in this iHe-sdO star and calls for a detailed quantitative spectral analysis focusing on trans-iron elements. Non-LTE model atmospheres and synthetic spectra calculated with TLUSTY/SYNSPEC were combined with high-quality optical, ultraviolet (UV), and far-UV (FUV) spectra of HZ44 and its hotter sibling HD127493 to determine their atmospheric parameters and metal abundance patterns. By collecting atomic data from the literature we succeeded in determining the abundances of 29 metals in HZ44, including the trans-iron elements Ga, Ge, As, Se, Zr, Sn, and Pb and providing upper limits for ten other metals. This makes it the best-described hot subdwarf in terms of chemical composition. For HD127493 the abundance of 15 metals, including Ga, Ge, and Pb and upper limits for another 16 metals were derived. Heavy elements turn out to be overabundant by one to four orders of magnitude with respect to the Sun. Zr and Pb are among the most enriched elements. The C, N, and O abundance for both stars can be explained by the nucleosynthesis of hydrogen burning in the CNO cycle along with the stars' helium enrichment. On the other hand, the heavy-element anomalies are unlikely to be caused by nucleosynthesis. Instead diffusion processes are evoked, with radiative levitation overcoming gravitational settlement of the heavy elements.
- ID:
- ivo://CDS.VizieR/J/MNRAS/446/2823
- Title:
- CO and CaT derived sigma in spiral galaxies
- Short Name:
- J/MNRAS/446/2823
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We examine the stellar velocity dispersions ({sigma}) of a sample of 48 galaxies, 35 of which are spirals, from the Palomar nearby galaxy survey. It is known that for ultra-luminous infrared galaxies (ULIRGs) and merger remnants, the {sigma} derived from the near-infrared CO band heads is smaller than that measured from optical lines, while no discrepancy between these measurements is found for early-type galaxies. No such studies are available for spiral galaxies - the subject of this paper. We used cross-dispersed spectroscopic data obtained with the Gemini Near-Infrared Spectrograph, with spectral coverage from 0.85 to 2.5{mu}m, to obtain {sigma} measurements from the 2.29{mu}m CO band heads ({sigma}CO) and the 0.85{mu}m calcium triplet ({sigma}_CaT_). For the spiral galaxies in the sample, we found that {sigma}_CO_ is smaller than {sigma}_CaT_, with a mean fractional difference of 14.3 per cent. The best fit to the data is given by {sigma}_opt_=(46.0+/-18.1)+(0.85+/-0.12){sigma}_CO_. This '{sigma}-discrepancy' may be related to the presence of warm dust, as suggested by a slight correlation between the discrepancy and the infrared luminosity. This is consistent with studies that have found no {sigma}-discrepancy in dust-poor early-type galaxies, and a much larger discrepancy in dusty merger remnants and ULIRGs. That {sigma}_CO_ is lower than {sigma}opt may also indicate the presence of a dynamically cold stellar population component. This would agree with the spatial correspondence between low-{sigma}_CO_ and young/intermediate-age stellar populations that has been observed in spatially resolved spectroscopy of a handful of galaxies.
- ID:
- ivo://CDS.VizieR/J/A+A/628/A72
- Title:
- C_2_O and C_3_O in low-mass star-forming regions
- Short Name:
- J/A+A/628/A72
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- C_2_O and C_3_O belong to the carbon chain oxides family. Both molecules have been detected in the gas phase towards several star-forming regions, and to explain the observed abundances, ion-molecule gas-phase reactions have been invoked. On the other hand, laboratory experiments have shown that carbon chain oxides are formed after energetic processing of CO-rich solid mixtures. Therefore, it has been proposed that they are formed in the solid phase in dense molecular clouds after cosmic ion irradiation of CO-rich icy grain mantles and released in the gas phase after their desorption. In this work, we contribute to the understanding of the role of both gas-phase reactions and energetic processing in the formation of simple carbon chain oxides that have been searched for in various low-mass star-forming regions. We present observations obtained with the Noto-32m and IRAM-30m telescopes towards star-forming regions. We compare these with the results of a gas-phase model that simulates C_2_O and C_3_O formation and destruction, and laboratory experiments in which both molecules are produced after energetic processing (with 200 keV protons) of icy grain mantle analogues. New detections of both molecules towards L1544, L1498, and Elias 18 are reported. The adopted gas phase model is not able to reproduce the observed C_2_O/C_3_O ratios, while laboratory experiments show that the ion bombardment of CO-rich mixtures produces C_2_O/C_3_O ratios that agree with the observed values. Based on the results obtained here, we conclude that the synthesis of both species is due to the energetic processing of CO-rich icy grain mantles. Their subsequent desorption because of non-thermal processes allows the detection in the gas-phase of young star-forming regions. In more evolved objects, the non-detection of both C_2_O and C_3_O is due to their fast destruction in the warm gas.
- ID:
- ivo://CDS.VizieR/J/A+AS/126/3
- Title:
- CO and HI in interacting galaxies
- Short Name:
- J/A+AS/126/3
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using SEST, the Parkes antenna and the Australia Telescope Compact Array, we have made a survey of the ^12^CO(1-0) and HI emission of an optically-selected sample of =~60 southern interacting and merging galaxies. In this paper we present the data and determine global masses of neutral gas (in molecular and atomic form) for the observed galaxies. We have detected HI in 26 systems and found that these galaxies have less than 15% of their gas in molecular form.
- ID:
- ivo://CDS.VizieR/J/A+A/554/A55
- Title:
- C^18^O(1-0) and N_2_H^+^(1-0) in L1495/B213
- Short Name:
- J/A+A/554/A55
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Core condensation is a critical step in the star-formation process, but it is still poorly characterized observationally. We have studied the 10pc-long L1495/B213 complex in Taurus to investigate how dense cores have condensed out of the lower density cloud material. We observed L1495/B213 in C^18^O(1-0), N_2_H^+^(1-0), and SO(J_N_=3_2_-2_1_) with the 14m FCRAO telescope, and complemented the data with dust continuum observations using APEX (870um) and IRAM 30m (1200um).
- ID:
- ivo://CDS.VizieR/J/A+A/489/1271
- Title:
- CO and OH abundances of 23 K-M giants
- Short Name:
- J/A+A/489/1271
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Based on the high resolution infrared spectra observed with the Fourier Transform Spectrometer (FTS) at the 4m telescope of the Kitt Peak National Observatory (KPNO), ro-vibrational lines of ^12^C^16^O, ^13^C^16^O, ^12^C^17^O, and ^16^OH were measured. Some details of the observed spectra including the resolution, S/N ratio, and data of observation are given in table2. The spectroscopic and equivalent width data are given in table3 for 23 red giant stars. The resulting data are used to investigate the nature of the infrared spectra of K-M giant stars. It is found that only the weak lines (log(W/nu)<-4.75) carry the information on the photosphere and hence can be used to extract the nature of the photosphere such as the stellar abundances. The intermediate-strength (-4.75<log(W/nu)<-4.40) as well as the strong (log(W/nu)>-4.4) lines are badly disturbed by the lines of non-photospheric origin. In other words, most lines dominating the infrared spectra, except for the weak lines, are actually hybrid of at least two different kinds of lines originating in the photosphere and in an extra molecular layers outside of photosphere. The nature of the extra layers is not known well, but it may be related to the molecular envelope producing H_2_O lines, not only in late M but also in early M giants as well. Also, the intermediate-strength lines include those with LEP as high as 2eV and hence the extra molecular layer should be quite warm. For the reason outlined above, we determine C, O, and their isotopic abundances using only the weak lines, but we listed the measured data not only of the weak lines but also of the stronger lines as well in table3, with the hope that these data can be of some use to clarify the nature of the warm extra molecular layers.