We present optical imaging and spectroscopy of supernova (SN) LSQ13fn, a type II supernova with several hitherto-unseen properties. Although it initially showed strong symmetric spectral emission features attributable to HeII, NIII, and CIII, reminiscent of some interacting SNe, it transitioned into an object that would fall more naturally under a type II-Plateau (IIP) classification. However, its spectral evolution revealed several unusual properties: metal lines appeared later than expected, were weak, and some species were conspicuous by their absence. Furthermore, the line velocities were found to be lower than expected given the plateau brightness, breaking the SN IIP standardised candle method for distance estimates. We found that, in combination with a short phase of early-time ejecta-circumstellar material interaction, metal-poor ejecta, and a large progenitor radius could reasonably account for the observed behaviour. Comparisons with synthetic model spectra of SNe IIP of a given progenitor mass would imply a progenitor star metallicity as low as 0.1Z_{sun}_. LSQ13fn highlights the diversity of SNe II and the many competing physical effects that come into play towards the final stages of massive star evolution immediately preceding core-collapse.
This is an introduction to the tabulated database of stellar matter properties calculated within the framework of the Statistical Model for Supernova Matter (SMSM). The tables present thermodynamical characteristics and nuclear abundances for 31 values of baryon density (10^-8^ < {rho}/{rho}_0_< 0.32, {rho}_0_= 0.15 fm^-3^ is the normal nuclear matter density), 35 values of temperature (0.2 MeV < T < 25 MeV), and 28 values of electron-to-baryon ratio (0.02 < Y_e_< 0.56). The properties of stellar matter in {beta} equilibrium are also considered. The main ingredients of the SMSM are briefly outlined, and the data structure and content of the tables are explained.
Most of supernova-originating presolar grains, such as silicon carbide type X (SiC X) and low-density graphite, show excesses of ^28^Si. Some of them also indicate evidence for the original presence of short-lived nuclei ^44^Ti. In order to reproduce isotopic and elemental signatures of these grains, large-scale heterogeneous mixing in supernova ejecta is required. I investigate supernova mixtures that reproduce as many isotopic ratios as possible of 18 individual SiC X and 26 individual low-density graphite grains.
To measure the supernova (SN) rates at intermediate redshift we performed a search, the Southern inTermediate Redshift ESO Supernova Search (STRESS). Unlike most of the current high redshift SN searches, this survey was specifically designed to estimate the rate for both type Ia and core collapse (CC) SNe. We counted the SNe discovered in a selected galaxy sample measuring SN rate per unit blue band luminosity. Our analysis is based on a sample of ~43000 galaxies and on 25 spectroscopically confirmed SNe plus 64 selected SN candidates. Our approach is aimed at obtaining a direct comparison of the high redshift and local rates and at investigating the dependence of the rates on specific galaxy properties, most notably their colour.
We present the results from a sensitive X-ray survey of 26 nearby hydrogen-poor superluminous supernovae (SLSNe-I) with Swift, Chandra, and XMM. This data set constrains the SLSN evolution from a few days until ~2000d after explosion, reaching a luminosity limit Lx~10^40^erg/s and revealing the presence of significant X-ray emission possibly associated with PTF 12dam. No SLSN-I is detected above Lx~10^41^erg/s, suggesting that the luminous X-ray emission Lx~10^45^erg/s associated with SCP 60F6 is not common among SLSNe-I. We constrain the presence of off-axis gamma-ray burst (GRB) jets, ionization breakouts from magnetar engines and the density in the sub-parsec environments of SLSNe-I through inverse Compton emission. The deepest limits rule out the weakest uncollimated GRB outflows, suggesting that if the similarity of SLSNe-I with GRB/SNe extends to their fastest ejecta, then SLSNe-I are either powered by energetic jets pointed far away from our line of sight ({theta}>30{deg}), or harbor failed jets that do not successfully break through the stellar envelope. Furthermore, if a magnetar central engine is responsible for the exceptional luminosity of SLSNe-I, our X-ray analysis favors large magnetic fields B>2x10^14^G and ejecta masses M_ej_>3M_{sun}_, in agreement with optical/UV studies. Finally, we constrain the pre-explosion mass-loss rate of stellar progenitors of SLSNe-I. For PTF 12dam we infer dM/dt<2x10^-5^M_{sun}_/yr, suggesting that the SN shock interaction with an extended circumstellar medium is unlikely to supply the main source of energy powering the optical transient and that some SLSN-I progenitors end their lives as compact stars surrounded by a low-density medium similar to long GRBs and type Ib/c SNe.
SweetSpot DR1: 74 SNe Ia in 36 nights on WIYN+WHIRC
Short Name:
J/AJ/155/201
Date:
21 Oct 2021
Publisher:
CDS
Description:
SweetSpot is a 3 yr National Optical Astronomy Observatory (NOAO) survey program to observe Type Ia supernovae (SNe Ia) in the smooth Hubble flow with the WIYN High-resolution Infrared Camera (WHIRC) on the WIYN 3.5 m telescope. We present data from the first half of this survey, covering the 2011B-2013B NOAO semesters and consisting of 493 calibrated images of 74 SNe Ia observed in the rest-frame near-infrared (NIR) in the range 0.02<z<0.09. Because many observed supernovae require host-galaxy subtraction from templates taken in later semesters, this release contains only the 186 NIR (JHK_s_) data points for the 33 SNe Ia that do not require host-galaxy subtraction. The sample includes four objects with coverage beginning before the epoch of B-band maximum and 27 beginning within 20 days of B-band maximum. We also provide photometric calibration between the WIYN+WHIRC and Two Micron All-Sky Survey (2MASS) systems, along with light curves for 786 2MASS stars observed alongside the SNe Ia. This work is the first in a planned series of three SweetSpot Data Releases. Future releases will include the full set of images from all 3 yr of the survey, including host-galaxy reference images and updated data processing with host-galaxy reference subtraction. SweetSpot will provide a well-calibrated sample that will help improve our ability to standardize distance measurements to SNe Ia, examine the intrinsic optical-NIR colors of SNe Ia at different epochs, explore the nature of dust in other galaxies, and act as a stepping-stone for more distant, potentially space-based surveys.
We present and discuss ultraviolet and optical photometry from the Ultraviolet/Optical Telescope, X-ray limits from the X-Ray Telescope on Swift, and imaging polarimetry and ultraviolet/optical spectroscopy with the Hubble Space Telescope, all from observations of ASASSN-15lh. It has been classified as a hydrogen-poor superluminous supernova (SLSN I), making it more luminous than any other supernova observed. ASASSN-15lh is not detected in the X-rays in individual or co-added observations. From the polarimetry we determine that the explosion was only mildly asymmetric. We find the flux of ASASSN-15lh to increase strongly into the ultraviolet, with an ultraviolet luminosity 100 times greater than the hydrogen-rich, ultraviolet-bright SLSN II SN 2008es. We find that objects as bright as ASASSN-15lh are easily detectable beyond redshifts of ~4 with the single-visit depths planned for the Large Synoptic Survey Telescope. Deep near-infrared surveys could detect such objects past a redshift of ~20, enabling a probe of the earliest star formation. A late rebrightening-most prominent at shorter wavelengths-is seen about two months after the peak brightness, which is itself as bright as an SLSN. The ultraviolet spectra during the rebrightening are dominated by the continuum without the broad absorption or emission lines seen in SLSNe or tidal disruption events (TDEs) and the early optical spectra of ASASSN-15lh. Our spectra show no strong hydrogen emission, showing only Ly{alpha} absorption near the redshift previously found by optical absorption lines of the presumed host. The properties of ASASSN-15lh are extreme when compared to either SLSNe or TDEs.
We present the detection of persistent soft X-ray radiation with L_x_~10^41^-10^42^erg/s at the location of the extremely luminous, double-humped transient ASASSN-15lh as revealed by Chandra and Swift. We interpret this finding in the context of observations from our multiwavelength campaign, which revealed the presence of weak narrow nebular emission features from the host-galaxy nucleus and clear differences with respect to superluminous supernova optical spectra. Significant UV flux variability on short timescales detected at the time of the rebrightening disfavors the shock interaction scenario as the source of energy powering the long-lived UV emission, while deep radio limits exclude the presence of relativistic jets propagating into a low-density environment. We propose a model where the extreme luminosity and double-peaked temporal structure of ASASSN-15lh is powered by a central source of ionizing radiation that produces a sudden change in the ejecta opacity at later times. As a result, UV radiation can more easily escape, producing the second bump in the light curve. We discuss different interpretations for the intrinsic nature of the ionizing source. We conclude that, if the X-ray source is physically associated with the optical-UV transient, then ASASSN-15lh most likely represents the tidal disruption of a main-sequence star by the most massive spinning black hole detected to date. In this case, ASASSN-15lh and similar events discovered in the future would constitute the most direct probes of very massive, dormant, spinning, supermassive black holes in galaxies. Future monitoring of the X-rays may allow us to distinguish between the supernova hypothesis and the hypothesis of a tidal disruption event.
The intrinsic colors of Type Ia supernovae (SNe Ia) are important to understanding their use as cosmological standard candles. Understanding the effects of reddening and redshift on the observed colors are complicated and dependent on the intrinsic spectrum, the filter curves, and the wavelength dependence of reddening. We present ultraviolet and optical data of a growing sample of SNe Ia observed with the Ultraviolet/Optical Telescope on the Swift spacecraft and use this sample to re-examine the near-UV (NUV) colors of SNe Ia. We find that a small amount of reddening (E(B-V)=0.2mag) could account for the difference between groups designated as NUV-blue and NUV-red, and a moderate amount of reddening (E(B-V)=0.5mag) could account for the whole NUV-optical differences. The reddening scenario, however, is inconsistent with the mid-UV colors and color evolution. The effect of redshift alone only accounts for part of the variation. Using a spectral template of SN2011fe, we can forward model the effects of redshift and reddening and directly compare those with the observed colors. We find that some SNe are consistent with reddened versions of SN2011fe, but most SNe Ia are much redder in the uvw1-v color than SN2011fe reddened to the same b-v color. The absolute magnitudes show that two out of five NUV-blue SNe Ia are blue because their near-UV luminosity is high, and the other three are optically fainter. We also show that SN 2011fe is not a "normal" SN Ia in the UV, but has colors placing it at the blue extreme of our sample.
We compare early ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) with theoretical predictions for the brightness of the shock associated with the collision between SN ejecta and a companion star. Our simple method is independent of the intrinsic flux from the SN and treats the flux observed with the Swift/Ultra-Violet Optical Telescope as conservative upper limits on the shock brightness. Comparing this limit with the predicted flux for various shock models, we constrain the geometry of the SN progenitor-companion system. We find the model of a 1 M_{sun}_ red supergiant companion in Roche-lobe overflow to be excluded at a 95% confidence level for most individual SNe for all but the most unfavorable viewing angles. For the sample of 12 SNe taken together, the upper limits on the viewing angle are inconsistent with the expected distribution of viewing angles for red gaint stars as the majority of companions with high confidence. The separation distance constraints do allow main-sequence companions. A better understanding of the UV flux arising from the SN itself as well as continued UV observations of young SNe Ia will further constrain the possible progenitors of SNe Ia.