- ID:
- ivo://CDS.VizieR/J/ApJ/725/1792
- Title:
- Pi Ghz Sky Survey (PiGSS). I.
- Short Name:
- J/ApJ/725/1792
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array. PiGSS is a 3.1GHz survey of radio continuum emission in the extragalactic sky with an emphasis on synoptic observations that measure the static and time-variable properties of the sky. During the 2.5 year campaign, PiGSS will twice observe ~250000 radio sources in the 10000deg^2^ region of the sky with b>30{deg} to an rms sensitivity of ~1mJy. Additionally, sub-regions of the sky will be observed multiple times to characterize variability on timescales of days to years. We present here observations of a 10deg^2^ region in the Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The PiGSS image was constructed from 75 daily observations distributed over a 4 month period and has an rms flux density between 200 and 250uJy. This represents a deeper image by a factor of 4-8 than we will achieve over the entire 10000deg^2^. We provide flux densities, source sizes, and spectral indices for the 425 sources detected in the image. We identify ~100 new flat-spectrum radio sources; we project that when completed PiGSS will identify 104 flat-spectrum sources. We identify one source that is a possible transient radio source. This survey provides new limits on faint radio transients and variables with characteristic durations of months.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/739/76
- Title:
- Pi GHz Sky Survey (PiGSS). II.
- Short Name:
- J/ApJ/739/76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from daily radio continuum observations of the Bootes field as part of the Pi GHz Sky Survey (PiGSS). These results are part of a systematic and unbiased campaign to characterize variable and transient sources in the radio sky. The observations include 78 individual epochs distributed over five months at a radio frequency of 3.1GHz with a median rms image noise in each epoch of 2.8mJy. We produce five monthly images with a median rms of 0.6mJy. No transient radio sources are detected in the daily or monthly images. At 15mJy, we set an upper limit (2{sigma}) to the surface density of one-day radio transients at 0.025deg^-2^. At 5mJy, we set an upper limit (2{sigma}) to the surface density of one-month radio transients at 0.18deg^-2^. We also produce light curves for 425 sources and explore the variability properties of these sources. Approximately 20% of the sources exhibit some variability on daily and monthly timescales. The maximum rms fractional modulations on the one-day and one-month timescales for sources brighter than 10mJy are 2 and 0.5, respectively. The probability of a daily fluctuation for all sources and all epochs by a factor of 10 is less than 10^-4^. We compare the radio to mid-infrared variability for sources in the field and find no correlation. Finally, we apply the statistics of transient and variable populations to constrain models for a variety of source classes.
- ID:
- ivo://CDS.VizieR/J/ApJ/762/93
- Title:
- PiGSS. III. ELAIS-N1, Coma & Lockman fields
- Short Name:
- J/ApJ/762/93
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from a total of 459 repeated 3.1GHz radio continuum observations (of which 379 were used in a search for transient sources) of the ELAIS-N1, Coma, Lockman Hole, and NOAO Deep Wide Field Survey fields as part of the Pi GHz Sky Survey. The observations were taken approximately once per day between 2009 May and 2011 April. Each image covers 11.8 square degrees and has 100" FWHM resolution. Deep images for each of the four fields have rms noise between 180 and 310{mu}Jy, and the corresponding catalogs contain ~200 sources in each field. Typically 40-50 of these sources are detected in each single-epoch image. This represents one of the shortest cadence, largest area, multi-epoch surveys undertaken at these frequencies. We compare the catalogs generated from the combined images to those from individual epochs, and from monthly averages, as well as to legacy surveys. We undertake a search for transients, with particular emphasis on excluding false positive sources. We find no confirmed transients, defined here as sources that can be shown to have varied by at least a factor of 10. However, we find one source that brightened in a single-epoch image to at least six times the upper limit from the corresponding deep image. We also find a source associated with a z=0.6 quasar which appears to have brightened by a factor ~3 in one of our deep images, when compared to catalogs from legacy surveys. We place new upper limits on the number of transients brighter than 10mJy: fewer than 0.08 transients deg^-2^ with characteristic timescales of months to years; fewer than 0.02deg^-2^ with timescales of months; and fewer than 0.009deg^-2^ with timescales of days. We also plot upper limits as a function of flux density for transients on the same timescales.
- ID:
- ivo://CDS.VizieR/VIII/91
- Title:
- Planck Catalog of Compact Sources Release 1
- Short Name:
- VIII/91
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Planck is a European Space Agency (ESA) mission, with significant contributions from the U.S. National Aeronautics and Space Agency (NASA). It is the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 13 August 2009. Since then, Planck has been continuously measuring the intensity of the sky over a range of frequencies from 30 to 857GHz (wavelengths of 1cm to 350{mu}m) with spatial resolutions ranging from about 33' to 5' respectively. The Low Frequency Instrument (LFI) on Planck provides temperature and polarization information using radiometers which operate between 30 and 70GHz. The High Frequency Instrument (HFI) uses pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353GHz but does not measure polarization information in the two upper HFI bands at 545 and 857GHz. The lowest frequencies overlap with WMAP, and the highest frequencies extend far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck is providing an unprecedented window into dust emission at far-infrared and submillimeter wavelengths. The PCCS (Planck Catalog of Compact Sources) is the list of sources detected in the first 15 months of Planck "nominal" mission. It consists of nine single-frequency catalogues of compact sources, both Galactic and extragalactic, detected over the entire sky. The PCCS covers the frequency range 30-857 GHz with higher sensitivity (it is 90% complete at 180mJy in the best channel) and better angular resolution than previous all-sky surveys in the microwave band. By construction its reliability is >80% and more than 65% of the sources have been detected at least in two contiguous Planck channels. Many of the Planck PCCS sources can be associated with stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features.
- ID:
- ivo://CDS.VizieR/J/A+A/594/A28
- Title:
- Planck Catalogue of Galactic cold clumps (PGCC)
- Short Name:
- J/A+A/594/A28
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (ERCSC) and which contained 915 high signal-to-noise sources. It is based on the Planck 48-month mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 454, and 353GHz) have been combined with IRAS data at 3THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, i.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC sources lies between 13 and 14.5K, depending on the quality of the flux density measurements, with a temperature ranging from 5.8 to 20K after removing the sources with the top 1% highest temperature estimates. Using seven independent methods, reliable distance estimates have been obtained for 5574 sources, which allows us to derive their physical properties such as their mass, physical size, mean density, and luminosity. The PGCC sources are located mainly in the solar neighbourhood, but also up to a distance of 10.5kpc in the direction of the Galactic centre, and range from low-mass cores to large molecular clouds. Because of this diversity and because the PGCC catalogue contains sources in very different environments, the catalogue is useful for investigating the evolution from molecular clouds to cores. Finally, it also includes 54 additional sources located in the Small and Large Magellanic Clouds.
- ID:
- ivo://CDS.VizieR/VIII/88
- Title:
- Planck Early Release Compact Source Catalogue
- Short Name:
- VIII/88
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Planck is a European Space Agency (ESA) mission, with significant contributions from the U.S. National Aeronautics and Space Agency (NASA). It is the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 13 August 2009. Since then, Planck has been continuously measuring the intensity of the sky over a range of frequencies from 30 to 857GHz (wavelengths of 1cm to 350{mu}m) with spatial resolutions ranging from about 33' to 5' respectively. The Low Frequency Instrument (LFI) on Planck provides temperature and polarization information using radiometers which operate between 30 and 70GHz. The High Frequency Instrument (HFI) uses pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353GHz but does not measure polarization information in the two upper HFI bands at 545 and 857GHz. The lowest frequencies overlap with WMAP, and the highest frequencies extend far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck is providing an unprecedented window into dust emission at far-infrared and submillimeter wavelengths. The Planck Early Release Compact Source Catalogue (ERCSC) is a list of all high reliability sources, both Galactic and extragalactic, derived from the first sky coverage. The data that went into this early release comprise all observations undertaken between 13 August 2009 and 6 June 2010, corresponding to Planck operational days 91-389. Since the Planck scan strategy results in the entire sky being observed every 6 months, the data considered in this release correspond to more than the first sky coverage. The source lists have reliability goals of >90% across the entire sky and >95% at high Galactic latitude. The goals on photometric accuracy are 30% while the positional accuracy goal translates to a positional root mean square (RMS) uncertainty that is less than 1/5 of the beam full width at half maximum (FWHM). Detailed explanations about the mission and the catalogs included here can be found in the "Explanatory supplement" (file "ercsc4_3.pdf"). Skymaps of the sources can be found in the "skymaps" subdirectory; postage stamps of the sources in the ECC (Early Cold Cores) catalog and in the different filters are located in the "stamps" subdirectory. The "Byte-by-byte Description" below contain column names standardized according to the conventions used at CDS; the original column names, as defined in the FITS files, are listed, enclosed within parentheses, at the end of the explanations.
- ID:
- ivo://CDS.VizieR/J/MNRAS/458/3619
- Title:
- Planck ERCSC sources with 100 GHz flux excess
- Short Name:
- J/MNRAS/458/3619
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Planck Early Release Compact Source Catalogue (ERCSC) includes nine lists of highly reliable sources, individually extracted at each of the nine Planck frequency channels. To facilitate the study of the Planck sources, especially their spectral behaviour across the radio/infrared frequencies, we provide a 'bandmerged' catalogue of the ERCSC sources. This catalogue consists of 15191 entries, with 79 sources detected in all nine frequency channels of Planck and 6818 sources detected in only one channel. We describe the bandmerging algorithm, including the various steps used to disentangle sources in confused regions. The multifrequency matching allows us to develop spectral energy distributions of sources between 30 and 857GHz, in particular across the 100GHz band, where the energetically important CO J=1->0 line enters the Planck bandpass. We find ~3{sigma}-5{sigma} evidence for contribution to the 100GHz intensity from foreground CO along the line of sight to 147 sources with |b|>{30deg}. The median excess contribution is 4.5+/-0.9 per cent of their measured 100 GHz flux density which cannot be explained by calibration or beam uncertainties. This translates to 0.5+/-0.1K.km/s of CO which must be clumped on the scale of the Planck 100GHz beam, i.e. ~10-arcmin. If this is due to a population of low-mass (~15M_{sun}_) molecular gas clumps, the total mass in these clumps may be more than 2000 M_{sun}_. Further, high-spatial-resolution, ground-based observations of the high-latitude sky will help shed light on the origin of this diffuse, clumpy CO emission.
- ID:
- ivo://CDS.VizieR/J/PAZh/43/559
- Title:
- Planck galaxy cluster catalogue extension
- Short Name:
- J/PAZh/43/559
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalogue of galaxy clusters detected in the Planck all-sky Compton parameter maps and identified using data from the WISE and SDSS surveys. The catalogue comprises about 3000 clusters in the SDSS fields. We expect the completeness of this catalogue to be high for clusters with masses larger than M500~=3x10^14^M_{sun}_, located at redshifts z<0.7. At redshifts above z~=0.4, the catalogue contains approximately an order of magnitude more clusters than the 2nd Planck Catalogue of Sunyaev-Zeldovich sources in the same fields of the sky. This catalogue can be used for identification of massive galaxy clusters in future large cluster surveys, such as the SRG/eROSITA all-sky X-ray survey.
- ID:
- ivo://CDS.VizieR/J/A+A/596/A100
- Title:
- Planck high-z source candidates catalog (PHZ)
- Short Name:
- J/A+A/596/A100
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the high-redshift Universe traced by their dust emission. A novel method, based on a component-separation procedure using a combination of Planck and IRAS data, has been validated and characterized on numerous simulations, and applied to select the most luminous cold submillimetre sources with spectral energy distributions peaking between 353 and 857GHz at 5' resolution. A total of 2151 Planck high-z source candidates (the PHZ) have been detected in the cleanest 26% of the sky, with flux density at 545GHz above 500mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colours than their surroundings, consistent with redshifts z>2, assuming a dust temperature of Txgal=35K and a spectral index of {beta}xgal=1.5. Exhibiting extremely high luminosities, larger than 10^14^L_{sun}_, the PHZ objects may be made of multiple galaxies or clumps at high redshift, as suggested by a first statistical analysis based on a comparison with number count models. Furthermore, first follow-up observations obtained from optical to submillimetre wavelengths, which can be found in companion papers, have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed star-forming galaxies at redshift 2 to 4, while the vast majority of the PHZ sources appear as overdensities of dusty star-forming galaxies, having colours consistent with being at z>2, and may be considered as proto-cluster candidates. The PHZ provides an original sample, which is complementary to the Planck Sunyaev-Zeldovich Catalogue (PSZ2); by extending the population of virialized massive galaxy clusters detected below z<1.5 through their SZ signal to a population of sources at z>1.5, the PHZ may contain the progenitors of today's clusters. Hence the Planck list of high-redshift source candidates opens a new window on the study of the early stages of structure formation, particularly understanding the intensively star-forming phase at high-z.
- ID:
- ivo://CDS.VizieR/J/A+A/594/A27
- Title:
- Planck Sunyaev-Zeldovich sources (PSZ2)
- Short Name:
- J/A+A/594/A27
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest systematic all-sky survey of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data sets, and is the first SZ-selected cluster survey containing >10^3^ confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the estimates of the SZ strength parameter Y_5R500_ are robust to pressure-profile variation and beam systematics, but accurate conversion to Y_500_ requires the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infrared, optical, and X-ray data sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under-luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples.