- ID:
- ivo://CDS.VizieR/J/PASP/123/1011
- Title:
- Star Formation Reference Survey (SFRS)
- Short Name:
- J/PASP/123/1011
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Star formation is arguably the most important physical process in the cosmos. It is a fundamental driver of galaxy evolution and the ultimate source of most of the energy emitted by galaxies. A correct interpretation of star formation rate (SFR) measures is therefore essential to our understanding of galaxy formation and evolution. Unfortunately, however, no single SFR estimator is universally available or even applicable in all circumstances: the numerous galaxies found in deep surveys are often too faint (or too distant) to yield significant detections with most standard SFR measures, and until now there have been no global, multi-band observations of nearby galaxies that span all the conditions under which star-formation is taking place. To address this need in a systematic way, we have undertaken a multi-band survey of all types of star-forming galaxies in the local Universe. This project, the Star Formation Reference Survey (SFRS), is based on a statistically valid sample of 369 nearby galaxies that span all existing combinations of dust temperature, SFR, and specific SFR. Furthermore, because the SFRS is blind with respect to AGN fraction and environment it serves as a means to assess the influence of these factors on SFR. Our panchromatic global flux measurements (including GALEX FUV+NUV, SDSS ugriz, 2MASS JHKs, Spitzer 3-8um, and others) furnish uniform SFR measures and the context in which their reliability can be assessed. This paper describes the SFRS survey strategy, defines the sample, and presents the multi-band photometry collected to date.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/888/92
- Title:
- Star-forming clumps in local luminous IR galaxies
- Short Name:
- J/ApJ/888/92
- Date:
- 25 Oct 2021 10:18:57
- Publisher:
- CDS
- Description:
- We present HST narrowband near-infrared imaging of Pa{alpha} and Pa{beta} emission of 48 local luminous infrared galaxies (LIRGs) from the Great Observatories All-Sky LIRG Survey. These data allow us to measure the properties of 810 spatially resolved star-forming regions (59 nuclei and 751 extranuclear clumps) and directly compare their properties to those found in both local and high-redshift star-forming galaxies. We find that in LIRGs the star-forming clumps have radii ranging from ~90 to 900pc and star formation rates (SFRs) of ~1x10^-3^ to 10M_{sun}_/yr, with median values for extranuclear clumps of 170pc and 0.03M_{sun}_/yr. The detected star-forming clumps are young, with a median stellar age of 8.7Myr, and have a median stellar mass of 5x10^5^M_{sun}_. The SFRs span the range of those found in normal local star-forming galaxies to those found in high-redshift star-forming galaxies at z=1-3. The luminosity function of the LIRG clumps has a flatter slope than found in lower-luminosity, star-forming galaxies, indicating a relative excess of luminous star-forming clumps. In order to predict the possible range of star-forming histories and gas fractions, we compare the star-forming clumps to those measured in the MassiveFIRE high-resolution cosmological simulation. The star-forming clumps in MassiveFIRE cover the same range of SFRs and sizes found in the local LIRGs and have total gas fractions that extend from 10% to 90%. If local LIRGs are similar to these simulated galaxies, we expect that future observations with ALMA will find a large range of gas fractions, and corresponding star formation efficiencies, among the star-forming clumps in LIRGs.
- ID:
- ivo://CDS.VizieR/J/A+A/562/A15
- Title:
- Star-forming galaxies in AKARI Deep Field-South
- Short Name:
- J/A+A/562/A15
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The main aim of this work is the characterization of physical properties of galaxies detected in the far infrared (FIR) in the AKARI Deep Field-South (ADF-S) survey. Starting from a catalog of the brightest 1000 ADF-S sources in the WIDE-S (90um) AKARI band, we constructed a subsample of galaxies with spectral coverage from the ultraviolet to the far-infrared. Then, we analyzed the multiwavelength properties of this 90um-selected sample of galaxies. For galaxies without known spectroscopic redshifts we computed photometric redshifts using codes Le PHARE and CIGALE, tested these photometric redshifts using spectroscopic redshifts, and compared the performances of both codes. To test the reliability of parameters obtained by fitting Spectral Energy Distributions, a mock catalogue has been generated. We built a large multiwavelength catalog of more than 500 ADF-S galaxies. We successfully fitted Spectral Energy Distributions of 186 galaxies with {chi}^2^<4, and analyzed the output parameters of the fits. We conclude that our sample consists mostly of nearby actively star-forming galaxies, and all our galaxies have a relatively high metallicity. We estimated photometric redshifts for 113 galaxies from the whole ADF-S sample. Comparing the performance of Le PHARE and CIGALE, we found that CIGALE gives more reliable redshift estimates for our galaxies, which implies that including the IR photometry allows for substantial improvement of photometric redshift estimation.
- ID:
- ivo://CDS.VizieR/J/A+A/632/A15
- Title:
- Star-forming low-mass gal. stellar host
- Short Name:
- J/A+A/632/A15
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The morphological evolution of star-forming galaxies provides important clues to understand their physical properties, as well as the triggering and quenching mechanisms of star formation. We analyze the morphology of galaxies hosting star-forming events at low redshift (z<0.36). We aim at connecting morphology and star-formation properties of low-mass galaxies (median stellar mass ~10^8.5^M_{sun}_) beyond the local Universe. We use a sample of medium-band selected star-forming galaxies from the GOODS-North field. H images for the sample are created combining both spectral energy distribution fits and HST data. Using them, we mask the star forming regions to obtain an unbiased two-dimensional model of the light distribution of the host galaxies. For this purpose we use PHI, a new Bayesian photometric decomposition code. We applied it independently to 7 HST bands, from the ultraviolet to the near-infrared, assuming a Sersic surface brightness model. Star-forming galaxy hosts show low Sersic index (with median n~0.9), as well as small sizes (median Re~1.6kpc), and negligible change of the parameters with wavelength (except for the axis ratio, which grows with wavelength in 46% of the sample). Using a clustering algorithm, we find two different classes of star-forming galaxies: A more compact, redder, and high-n (class A) and a more extended, bluer and lower-n one (class B). This separation holds across all seven bands analyzed. In addition, we find evidence that the first class is more spheroidal-like (according to the distribution of observed axis ratios). We compute the color gradients of the host galaxies finding that 48% of the objects where the analysis could be performed show negative gradients, and only in 5% they are positive. The host component of low-mass star-forming galaxies at z<0.36 separates into two different classes, similar to what has been found for their higher mass counterparts. The results are consistent with an evolution from class B to class A. Several mechanisms from the literature, like minor and major mergers, and violent disk instability, can explain the physical process behind the likely transition between the classes.
- ID:
- ivo://CDS.VizieR/J/A+A/514/A3
- Title:
- Star-galaxy separation in AKARI FIS All-Sky Survey
- Short Name:
- J/A+A/514/A3
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- To separate stars and galaxies in the far infrared AKARI All-Sky Survey data, we have selected a sample with the complete color information available in the low extinction regions of the sky and constructed color-color plots for these data.We looked for the method to separate stars and galaxies using the color information. We performed an extensive search for the counterparts of these selected All-Sky Survey objects in the NED and SIMBAD databases. Among 5176 selected objects, we found 4272 galaxies, 382 other extragalactic objects, 349 Milky Way stars, 50 other Galactic objects, and 101 sources detected before in various wavelengths but of an unknown origin. 22 sources were left unidentified. Then, we checked colors of stars and galaxies in the far-infrared flux-color and color-color plots.
- ID:
- ivo://CDS.VizieR/J/A+A/638/A76
- Title:
- StarHorse data for 5 surveys
- Short Name:
- J/A+A/638/A76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We combine high-resolution spectroscopic data from APOGEE-2 survey Data Release 16 (DR16) with broad-band photometric data from several sources, as well as parallaxes from Gaia Data Release 2 (DR2). Using the Bayesian isochrone-fitting code StarHorse, we derive distances, extinctions and astrophysical parameters for around 388,815 APOGEE stars, achieving typical distance uncertainties of 6% for APOGEE giants, 2% for APOGEE dwarfs, as well as extinction uncertainties of 0.07mag when all photometric information is available, and 0.17mag if optical photometry is missing. StarHorse uncertainties vary with the input spectroscopic catalogue, with the available photometry, and with the parallax uncertainties. To illustrate the impact of our results, we show that, thanks to Gaia DR2 and the now larger sky coverage of APOGEE-2 (including APOGEE-South), we obtain an extended map of the Galactic plane, providing an unprecedented coverage of the disk close to the Galactic mid-plane (|ZGal|<1kpc) from the Galactic Centre out to RGal 20 kpc. The improvements in statistics as well as distance and extinction uncertainties unveil the presence of the bar in stellar density, as well as the striking chemical duality in the innermost regions of the disk, now clearly extending to the inner bulge. We complement this paper with distances and extinctions for stars in other public released spectroscopic surveys: 324,999 in GALAH DR2, 4,928,715 in LAMOST DR5, 408,894 in RAVE DR6, and 6,095 in GES DR3.
- ID:
- ivo://CDS.VizieR/I/349
- Title:
- StarHorse, Gaia DR2 photo-astrometric distances
- Short Name:
- I/349
- Date:
- 05 Jan 2022
- Publisher:
- CDS
- Description:
- Combining the precise parallaxes and optical photometry delivered by Gaia's second data release with the photometric catalogues of Pan-STARRS1, 2MASS, and AllWISE, we derived Bayesian stellar parameters, distances, and extinctions for 265 million of the 285 million objects brighter than G=18. Because of the wide wavelength range used, our results substantially improve the accuracy and precision of previous extinction and effective temperature estimates. After cleaning our results for both unreliable input and output data, we retain 137 million stars, for which we achieve a median precision of 5% in distance, 0.20mag in V-band extinction, and 245K in effective temperature for G<=14, degrading towards fainter magnitudes (12%, 0.20mag, and 245K at G=16; 16%, 0.23mag, and 260K at G=17, respectively). We find a very good agreement with the asteroseismic surface gravities and distances of 7000 stars in the Kepler, K2-C3, and K2-C6 fields, with stellar parameters from the APOGEE survey, and with distances to star clusters. Our results are available through the ADQL query interface of the Gaia mirror at the Leibniz-Institut fuer Astrophysik Potsdam (gaia.aip.de) and as binary tables at data.aip.de. As a first application, we provide distance- and extinction-corrected colour-magnitude diagrams, extinction maps as a function of distance, and extensive density maps. These demonstrate the potential of our value-added dataset for mapping the three-dimensional structure of our Galaxy. In particular, we see a clear manifestation of the Galactic bar in the stellar density distributions, an observation that can almost be considered direct imaging of the Galactic bar.
- ID:
- ivo://CDS.VizieR/I/354
- Title:
- StarHorse2, Gaia EDR3 photo-astrometric distances
- Short Name:
- I/354
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We present a catalogue of 362 million stellar parameters, distances, and extinctions derived from Gaia's Early Data Release (EDR3) cross-matched with the photometric catalogues of Pan-STARRS1, SkyMapper, 2MASS, and AllWISE. The higher precision of the Gaia EDR3 data, combined with the broad wavelength coverage of the additional photometric surveys and the new stellar-density priors of the StarHorse code, allows us to substantially improve the accuracy and precision over previous photo-astrometric stellarparameter estimates. At magnitude G=14 (17), our typical precisions amount to 3% (15%) in distance, 0.13mag (0.15mag) in V-band extinction, and 140K (180K) in effective temperature. Our results are validated by comparisons with open clusters, as well as with asteroseismic and spectroscopic measurements, indicating systematic errors smaller than the nominal uncertainties for the vast majority of objects. We also provide distance- and extinction-corrected colour-magnitude diagrams, extinction maps, and extensive stellar density maps that reveal detailed substructures in the Milky Way and beyond. The new density maps now probe a much greater volume, extending to regions beyond the Galactic bar and to Local Group galaxies, with a larger total number density. We publish our results through an ADQL query interface (gaia.aip.de) as well as via tables containing approximations of the full posterior distributions. Our multi-wavelength approach and the deep magnitude limit render our results useful also beyond the next Gaia release, DR3.
- ID:
- ivo://CDS.VizieR/J/ApJS/153/523
- Title:
- Starless cores in CS(3-2) and DCO^+^(2-1) lines
- Short Name:
- J/ApJS/153/523
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present CS(3-2) and DCO^+^(2-1) observations of 94 starless cores and compare the results with previous CS(2-1) and N_2_H^+^(1-0) observations to study inward motions in starless cores. Eighty-four cores were detected in both CS and DCO^+^ lines. We identify 18 infall candidates based on observations of CS(3-2), CS(2-1), DCO^+^(2-1) and N_2_H^+^(1-0). The eight best candidates, L1355, L1498, L1521F, L1544, L158, L492, L694-2, and L1155C-1, each show at least four indications of infall asymmetry and no counterindications. Fits of the spectra to a two-layer radiative transfer model in ten infall candidates suggest that the median effective line of sight speed of the inward-moving gas is ~0.07km/s for CS(3-2) and ~0.04km/s for CS(2-1).
- ID:
- ivo://CDS.VizieR/J/AJ/130/2701
- Title:
- Stars in the Sagittarius Rift
- Short Name:
- J/AJ/130/2701
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A magnitude-limited photographic survey of relative proper-motion components and B, V photometry of 1.3x10^6^ stars brighter than apparent B magnitude 14.5+/-0.5 in the fourth Galactic quadrant is converted into a distance-limited survey of 3.26x10^5^ stars up to a distance of 500pc. A streaming motion of 13.5+/-0.5 km/s is detected in 4.1x10^4^ Population I stellar candidates with an orbital perigalactic center located at 6.8<=R<=7.2kpc, with a Sun location Rsol=8.5 kpc. A density perturbation of about 0.1M{sun}/pc^3^ in the Galactic field potential at Ro~6.8kpc is interpreted as resulting from the density wave connected with the Sagittarius-Carina spiral arm. A set of 1.4x10^4^ stars of mass about 1.5+/-0.75 M{sun} identify a pitch angle of 10+/-1{deg} and a migration time from the Sagittarius spiral arm into the greater solar neighborhood of about 35Myr.