This paper describes the first data release of the Kepler-INT Survey (KIS) that covers a 116deg^2^ region of the Cygnus and Lyra constellations. The Kepler field is the target of the most intensive search for transiting planets to date. Despite the fact that the Kepler mission provides superior time-series photometry, with an enormous impact on all areas of stellar variability, its field lacks optical photometry complete to the confusion limit of the Kepler instrument necessary for selecting various classes of targets. For this reason, we follow the observing strategy and data reduction method used in the IPHAS and UVEX galactic plane surveys in order to produce a deep optical survey of the Kepler field. This initial release concerns data taken between 2011 May and August, using the Isaac Newton Telescope on the island of La Palma. Four broadband filters were used, U, g, r, i, as well as one narrowband one, H{alpha}, reaching down to a 10{sigma} limit of ~20th mag in the Vega system. Observations covering ~5 deg^2^, thus about half of the field, passed our quality control thresholds and constitute this first data release. We derive a global photometric calibration by placing the KIS magnitudes as close as possible to the Kepler Input Catalog (KIC) photometry. The initial data release catalog containing around 6 million sources from all the good photometric fields is available for download from the KIS Web site (www.astro.warwick.ac.uk/research/kis/) as well as via MAST (KIS magnitudes can be retrieved using the MAST enhanced target search page http://archive.stsci.edu/kepler/kepler_fov/search.php and also via Casjobs at MAST Web site http://mastweb.stsci.edu/kplrcasjobs/).
We present Korea Microlensing Telescope Network (KMTNet) light curves for microlensing-event candidates in the Kepler K2 C9 field having peaks within three effective timescales of the Kepler observations. These include 181 "clear microlensing" and 84 "possible microlensing" events found by the KMTNet event finder, plus 56 other events found by OGLE and/or MOA that were not found by KMTNet. All data for the first two classes are immediately available for public use without restriction.
We present the results of the largest L' (3.8 {mu}m) direct imaging survey for exoplanets to date, the Large Binocular Telescope Interferometer Exozodi Exoplanet Common Hunt (LEECH). We observed 98 stars with spectral types from B to M. Cool planets emit a larger share of their flux in L' compared to shorter wavelengths, affording LEECH an advantage in detecting low-mass, old, and cold-start giant planets. We emphasize proximity over youth in our target selection, probing physical separations smaller than other direct imaging surveys. For FGK stars, LEECH outperforms many previous studies, placing tighter constraints on the hot-start planet occurrence frequency interior to ~20 au. For less luminous, cold-start planets, LEECH provides the best constraints on giant-planet frequency interior to ~20 au around FGK stars. Direct imaging survey results depend sensitively on both the choice of evolutionary model (e.g., hot- or cold-start) and assumptions (explicit or implicit) about the shape of the underlying planet distribution, in particular its radial extent. Artificially low limits on the planet occurrence frequency can be derived when the shape of the planet distribution is assumed to extend to very large separations, well beyond typical protoplanetary dust-disk radii (~<50 au), and when hot-start models are used exclusively. We place a conservative upper limit on the planet occurrence frequency using cold-start models and planetary population distributions that do not extend beyond typical protoplanetary dust-disk radii. We find that ~<90% of FGK systems can host a 7-10 M_Jup_ planet from 5 to 50 au. This limit leaves open the possibility that planets in this range are common.
Between 1997 June and 2001 February the Two Micron All Sky Survey (2MASS) collected 25.4 Tbytes of raw imaging data covering 99.998% of the celestial sphere in the near-infrared J(1.25{mu}m), H(1.65{mu}m), and Ks(2.16{mu}m) bandpasses. Observations were conducted from two dedicated 1.3 m diameter telescopes located at Mount Hopkins, Arizona, and Cerro Tololo, Chile. The 2MASS All-Sky Data Release includes the FITS images covering the entire sky, a Point Source Catalog (PSC) of 471 million sources (Cat. II/242), and the present Extended Source Catalog. The 2MASS Extended Source Catalog contains sources that are extended with respect to the instantaneous PSF, such as galaxies and Galactic nebulae. The algorithms used to create the 2MASX catalog are described by Jarett et al. (2000AJ....119.2498J), and in the 2MASS Explanatory Supplement (accessible from the 2MASS Home Page). Briefly, point/ extended-source discrimination was conducted for each band-merged point-source detection by comparing a variety of radial shape, surface brightness, image moments, and symmetry parameters with characteristic stellar parameters using an oblique decision tree classifier. The classification tests included filters to exclude double and triple stars, which were one of the main contaminants in high source density regions. Stellar parameters were measured empirically as a function of time in each scan to compensate for variations in the atmospheric seeing using the aggregate properties of band-merged point-source extractions. The catalog contains 389 columns described briefly in the "Byte-by-byte Description" section below; their description includes also the 2MASS database original column names used in the original descriptions.
Massive early-type galaxies represent the modern day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ~100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M*>~10^11.5^ M_{sun}_ and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.
We present the results of the 2MASS Redshift Survey (2MRS), a ten-year project to map the full three-dimensional distribution of galaxies in the nearby universe. The Two Micron All Sky Survey (2MASS) was completed in 2003 and its final data products, including an extended source catalog (XSC), are available online. The 2MASS XSC contains nearly a million galaxies with Ks<=13.5mag and is essentially complete and mostly unaffected by interstellar extinction and stellar confusion down to a galactic latitude of |b|=5{deg} for bright galaxies. Near-infrared wavelengths are sensitive to the old stellar populations that dominate galaxy masses, making 2MASS an excellent starting point to study the distribution of matter in the nearby universe. We selected a sample of 44599 2MASS galaxies with Ks<=11.75mag and |b|>=5{deg} (>=8{deg} toward the Galactic bulge) as the input catalog for our survey. We obtained spectroscopic observations for 11000 galaxies and used previously obtained velocities for the remainder of the sample to generate a redshift catalog that is 97.6% complete to well-defined limits and covers 91% of the sky. This provides an unprecedented census of galaxy (baryonic mass) concentrations within 300Mpc. Earlier versions of our survey have been used in a number of publications that have studied the bulk motion of the Local Group, mapped the density and peculiar velocity fields out to 50h^-1^Mpc, detected galaxy groups, and estimated the values of several cosmological parameters. Additionally, we present morphological types for a nearly complete sub-sample of 20860 galaxies with Ks<=11.25mag and |b|>=10{deg}.
This catalogue contains a new meter-wave survey of the sky region north of declination 30{deg}, carried out with the Miyun 232 MHz SSSynthesis Radio Telescope (MSRT) at HPBW 3.8' x 3.8' cosec(dec). Results from two fields are presented here; the fields are 8 degrees on a side, centered at 0041+41.2 and 0700+35.0. The accuracy of flux determination is limited by background fluctuation which is about 30 mJy. The catalogue is complete for sources with flux greater than 0.25 Jy. The total number of sources listed in the catalogue is 687.
We present the description and early results of the mJy Imaging VLBA Exploration at 20cm (mJIVE-20). mJIVE-20 is a large project on the Very Long Baseline Array which is systematically inspecting a large sample of mJy radio sources, pre-selected from the Faint Images of the Radio Sky at Twenty cm (FIRST) survey made with the Very Large Array, to identify any compact emission that may be present. The survey is being undertaken using filler time on the VLBA, which utilizes short segments scheduled in bad weather and/or with a reduced number of antennas, during which no highly rated science projects can be scheduled. The newly available multifield capability of the VLBA makes it possible for us to inspect of the order of 100 sources per hour of observing time with a 6.75{sigma} detection sensitivity of approximately 1mJy/beam. The results of the mJIVE-20 survey are made publicly available as soon as the data are calibrated. After 18 months of observing, over 20000 FIRST sources have been inspected, with 4336 very long baseline interferometry detections. These initial results suggest that within the range 1-200mJy, fainter sources are somewhat more likely to be dominated by a very compact component than brighter sources. Over half of all arcsecond-scale mJy radio sources contain a compact component, although the fraction of sources that are dominated by milliarcsecond scale structure (where the majority of the arcsecond scale flux is recovered in the mJIVE-20 image) is smaller at around 30%-35%, increasing toward lower flux densities. Significant differences are seen depending on the optical classification of the source. Radio sources with a stellar/point-like counterpart in the Sloan Digital Sky Survey (SDSS) are more likely to be detected overall, but this detection likelihood appears to be independent of the arcsecond-scale radio flux density. The trend toward higher radio compactness for fainter sources is confined to sources that are not detected in SDSS or that have counterparts classified as galaxies. These results are consistent with a unification model of active galactic nuclei in which less luminous sources have on average slower radio jets, with lower Doppler suppression of compact core emission over a wider range of viewing angles.
We present the Second Palermo Swift-BAT hard X-ray catalogue obtained by analysing data acquired in the first 54 months of the Swift mission. Using our software dedicated to the analysis of data from coded mask telescopes, we analysed the BAT survey data in three energy bands (15-30keV, 15-70keV, 15-150keV), obtaining a list of 1256 detections above a significance threshold of 4.8 standard deviations. The identification of the source counterparts is pursued using two strategies: the analysis of field observations of soft X-ray instruments and cross-correlation of our catalogue with source databases. The survey covers 50% of the sky to a 15-150keV flux limit of 1.0x10^-11^erg/cm2/s and 9.2x10^-12^erg/cm2/s for |b|<10 and |b|>10, respectively. The Second Palermo Swift-BAT hard X-ray catalogue includes 1079 (~86%) hard X-ray sources with an associated counterpart (26 with a double association and 2 with a triple association) and 177 BAT excesses (~14%) that still lack a counterpart. The distribution of the BAT sources among the different object classes consists of ~19% Galactic sources, ~57% extragalactic sources, and ~10% sources with a counterpart at softer energies whose nature has not yet been determined. About half of the BAT associated sources lack a counterpart in the ROSAT catalogues. This suggests that either moderate or strong absorption may be preventing their detection in the ROSAT energy band. The comparison of our BAT catalogue with the Fermi Large Area Telescope First Source Catalogue identifies 59 BAT/Fermi correspondences: 48 blazars, 3 Seyfert galaxies, 1 interacting galaxy, 3 high mass X-ray binaries, and 4 pulsars/supernova remnants. This small number of correspondences indicates that different populations make the sky shine in these two different energy bands.
We present a catalog of hard X-ray sources detected in the first 105-months of observations with the Burst Alert Telescope (BAT) coded-mask imager on board the Swift observatory. The 105-month Swift-BAT survey is a uniform hard X-ray all-sky survey with a sensitivity of 8.40x10^-12^erg/s/cm^2^ over 90% of the sky and 7.24x10^-12^erg/s/cm^2^ over 50% of the sky in the 14-195keV band. The Swift-BAT 105-month catalog provides 1632 (422 new detections) hard X-ray sources in the 14-195 keV band above the 4.8{sigma} significance level. Adding to the previously known hard X-ray sources, 34% (144/422) of the new detections are identified as Seyfert active galactic nuclei (AGNs) in nearby galaxies (z<0.2). The majority of the remaining identified sources are X-ray binaries (7%, 31) and blazars/BL Lac objects (10%, 43). As part of this new edition of the Swift-BAT catalog, we release eight-channel spectra and monthly sampled light curves for each object in the online journal and at the Swift-BAT 105-month website.