- ID:
- ivo://CDS.VizieR/J/A+A/623/A127
- Title:
- Homogeneous sample of 34000 M7-M9.5 dwarfs
- Short Name:
- J/A+A/623/A127
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The space density of late M dwarfs, sub-types M7 to M9.5, is not well determined. We have applied the photo-type method of Skrzypek et al. to iz photometry from SDSS and YJHK photometry from UKIDSS, over an effective area of 3070deg^2^, to produce a new, bright J(Vega)<17.5, homogeneous sample of 33665 M7 to M9.5 dwarfs. The typical S/N of each source summed over the 6 bands is >100. Classifications are provided to the nearest half spectral sub-type. Through comparison with the classifications in the BUD spectroscopic sample of Schmidt et al. (2010, Cat. J/AJ/139/1808), the typing is shown to be accurately calibrated to the BUD classifications, with a precision better than 0.5 sub-types rms, i.e. is as precise as good spectroscopic classification. Sources with large chisq>20 include several catalogued late-type subdwarfs. The new sample of late M dwarfs is highly complete, but there is a bias in the classification of rare peculiar blue or red objects. For example L subdwarfs are misclassified towards earlier types by approximately two spectral sub-types. We estimate that this bias affects only ~1% of sources. Therefore the sample is well suited for measuring the luminosity function, as well as investigating the softening towards the Galactic plane of the exponential variation of density with height.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/722/566
- Title:
- Host galaxies of SNe Ia in SDSS-II SN survey
- Short Name:
- J/ApJ/722/566
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of the host galaxy dependences of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2{sigma} and 3{sigma}) that SNe Ia are ~0.1+/-0.04mag brighter in passive host galaxies than in star-forming hosts, after the SN Ia light curves have been standardized using the light-curve shape and color variations. This difference in brightness is present in both the SALT2 and MCLS2k2 light-curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R_V_=1.0+/-0.2, while SNe Ia in star-forming hosts require R_V_=1.8^+0.2^_-0.4_. The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of >4{sigma}) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.
- ID:
- ivo://CDS.VizieR/J/ApJ/770/107
- Title:
- Host galaxies of SNIa from SNfactory
- Short Name:
- J/ApJ/770/107
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and H{alpha}-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M_*_/M_{sun}_)>8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.
- ID:
- ivo://CDS.VizieR/J/AJ/162/188
- Title:
- Hot degenerates in the MCT survey. III.
- Short Name:
- J/AJ/162/188
- Date:
- 21 Mar 2022 00:13:43
- Publisher:
- CDS
- Description:
- We present optical spectra of 144 white dwarfs detected in the Montreal-Cambridge-Tololo colorimetric survey, including 120 DA, 12 DB, 4 DO, 1 DQ, and 7 DC stars. We also perform a model atmosphere analysis of all objects in our sample using the so-called spectroscopic technique, or the photometric technique in the case of DC white dwarfs. The main objective of this paper is to contribute to the ongoing effort of confirming spectroscopically all white dwarf candidates in the Gaia survey, in particular in the southern hemisphere. All our spectra are made available in the Montreal White Dwarf Database.
- ID:
- ivo://CDS.VizieR/J/A+A/619/A148
- Title:
- Hot stars observed by XMM-Newton. II.
- Short Name:
- J/A+A/619/A148
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We perform a survey of Oe and Be stars in the X-ray range. To this aim, we cross-correlated XMM-Newton and Chandra catalogs of X-ray sources with a list of Be stars, finding 84 matches in total. Of these, 51 objects had enough counts for a spectral analysis. This paper provides the derived X-ray properties (X-ray luminosities, and whenever possible, hardness ratios, plasma temperatures, and variability assessment) of this largest ever sample of Oe and Be stars. The targets display a wide range in luminosity and hardness. In particular, the significant presence of very bright and hard sources is atypical for X-ray surveys of OB stars. Several types of sources are identified. A subset of stars display the typical characteristics of O-stars, magnetic OB stars, or pre-main-sequence (PMS) objects: their Be nature does not seem to play an important role. However, another subset comprises gamma Cas analogs, which are responsible for the luminous and hard detections. Our sample contains seven known gamma Cas analogs, but we also identify eight new gamma Cas analogs and one gamma Cas candidate. This nearly doubles the sample of such stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/881/135
- Title:
- Hot subdwarf stars from Gaia DR2 and LAMOST DR5. II.
- Short Name:
- J/ApJ/881/135
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Three hundred and eighty eight hot subdwarf stars have been identified by using the Hertzsprung-Russell (HR) diagram built from the second data release of the Gaia mission. By analyzing their observed Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) spectra, we characterized 186 sdB, 73 He-sdOB, 65 sdOB, 45 sdO, 12 He-sdO, and 7 He-sdB stars. The atmospheric parameters of these stars (e.g., Teff, logg, log(nHe/nH)) are obtained by fitting the hydrogen (H) and helium (He) line profiles with synthetic spectra calculated from non-local thermodynamic equilibrium model atmospheres. Among these stars, we have 135 new identified hot subdwarfs which have not been cataloged before. Although 253 stars appear in the catalog by Geier+ (2017, J/A+A/600/A50), only 91 of them have atmospheric parameters. Together with the 294 hot subdwarf stars found by Lei+ (Paper I, 2018, J/ApJ/868/70), we identified 682 hot subdwarf stars in total by using the Gaia HR-diagram and LAMOST spectra. These results demonstrate the efficiency of our method to combine large surveys to search for hot subdwarf stars. We found a distinct gap in our He-sdOB stars based on their He abundance, which is also presented in extreme horizontal branch (EHB) stars of the globular cluster {omega} Cen. The number fraction of the sample size for the two subgroups is very different between the two counterparts. However, the distinct gap between the H-sdB stars and He-sdOB stars in {omega} Cen is not visible in our sample. More interestingly, the He-sdB population with the highest He abundance in our sample is completely missing in {omega} Cen. The discrepancy between our field hot subdwarf stars and the EHB stars in {omega} Cen indicate different origins for the two counterparts.
- ID:
- ivo://CDS.VizieR/J/ApJ/818/202
- Title:
- Hot subdwarf stars in LAMOST DR1
- Short Name:
- J/ApJ/818/202
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalog of 166 spectroscopically identified hot subdwarf stars from LAMOST DR1, 44 of which show the characteristics of cool companions in their optical spectra. Atmospheric parameters of 122 subdwarf stars with non-composite spectra were measured by fitting the profiles of hydrogen (H) and helium (He) lines with synthetic spectra from non-LTE model atmospheres. A unique property of our sample is that it covers a large range in apparent magnitude and galactic latitude, therefore it contains a mix of stars from different populations and galactic environments.
- ID:
- ivo://CDS.VizieR/J/ApJ/754/62
- Title:
- HRDS III. HII region kinematic distances
- Short Name:
- J/ApJ/754/62
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using the H I emission/absorption method, we resolve the kinematic distance ambiguity and derive distances for 149 of 182 (82%) H II regions discovered by the Green Bank Telescope H II Region Discovery Survey (GBT HRDS). The HRDS is an X-band (9 GHz, 3 cm) GBT survey of 448 previously unknown H II regions in radio recombination line and radio continuum emission. Here, we focus on HRDS sources from 67{deg}>={ell}>=18{deg}, where kinematic distances are more reliable. The 25 HRDS sources in this zone that have negative recombination line velocities are unambiguously beyond the orbit of the Sun, up to 20kpc distant. They are the most distant H II regions yet discovered. We find that 61% of HRDS sources are located at the far distance, 31% at the tangent-point distance, and only 7% at the near distance. "Bubble" H II regions are not preferentially located at the near distance (as was assumed previously) but average 10 kpc from the Sun. The HRDS nebulae, when combined with a large sample of H II regions with previously known distances, show evidence of spiral structure in two circular arc segments of mean Galactocentric radii of 4.25 and 6.0kpc. We perform a thorough uncertainty analysis to analyze the effect of using different rotation curves, streaming motions, and a change to the solar circular rotation speed. The median distance uncertainty for our sample of H II regions is only 0.5 kpc, or 5%. This is significantly less than the median difference between the near and far kinematic distances, 6 kpc. The basic Galactic structure results are unchanged after considering these sources of uncertainty.
- ID:
- ivo://CDS.VizieR/J/ApJ/764/34
- Title:
- HRDS IV. H, He and C radio recombination lines
- Short Name:
- J/ApJ/764/34
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Green Bank Telescope H II Region Discovery Survey (GBT HRDS) found hundreds of previously unknown Galactic regions of massive star formation by detecting hydrogen radio recombination line (RRL) emission from candidate H II region targets. Since the HRDS nebulae lie at large distances from the Sun, they are located in previously unprobed zones of the Galactic disk. Here, we derive the properties of helium and carbon RRL emission from HRDS nebulae. Our target sample is the subset of the HRDS that has visible helium or carbon RRLs. This criterion gives a total of 84 velocity components (14% of the HRDS) with helium emission and 52 (9%) with carbon emission. For our highest quality sources, the average ^4^He^+^/H^+^ abundance ratio by number, <y^+^>, is 0.068+/-0.023(1{sigma}). This is the same ratio as that measured for the sample of previously known Galactic H II regions. Nebulae without detected helium emission give robust y^+^ upper limits. There are 5 RRL emission components with y^+^ less than 0.04 and another 12 with upper limits below this value. These H II regions must have either a very low ^4^He abundance or contain a significant amount of neutral helium. The HRDS has 20 nebulae with carbon RRL emission but no helium emission at its sensitivity level. There is no correlation between the carbon RRL parameters and the 8um mid-infrared morphology of these nebulae.
- ID:
- ivo://CDS.VizieR/J/A+A/653/L6
- Title:
- HSC-SSP lens candidates from neural networks
- Short Name:
- J/A+A/653/L6
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We have carried out a systematic search for galaxy-scale strong lenses in multiband imaging from the Hyper Suprime-Cam (HSC) survey. Our automated pipeline, based on realistic strong-lens simulations, deep neural network classification, and visual inspection, is aimed at efficiently selecting systems with wide image separations (Einstein radii ~1.0-3.0"), intermediate redshift lenses (z~0.4-0.7), and bright arcs for galaxy evolution and cosmology. We classified gri images of all 62.5 million galaxies in HSC Wide with i-band Kron radius >0.8" to avoid strict preselections and to prepare for the upcoming era of deep, wide-scale imaging surveys with Euclid and Rubin Observatory. We obtained 206 newly-discovered candidates classified as definite or probable lenses with either spatially-resolved multiple images or extended, distorted arcs. In addition, we found 88 high-quality candidates that were assigned lower confidence in previous HSC searches, and we recovered 173 known systems in the literature. These results demonstrate that, aided by limited human input, deep learning pipelines with false positive rates as low as ~0.01% can be very powerful tools for identifying the rare strong lenses from large catalogs, and can also largely extend the samples found by traditional algorithms. We provide a ranked list of candidates for future spectroscopic confirmation.