- ID:
- ivo://CDS.VizieR/J/ApJ/807/139
- Title:
- Physical parameters of compact SFGs in COSMOS field
- Short Name:
- J/ApJ/807/139
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a study on the physical properties of compact star-forming galaxies (cSFGs) with M_*_>=10^10^ M_{sun}_ and 2<=z<= 3 in the COSMOS (Cosmic Evolution Survey) and GOODS-S (Great Observatories Origins Deep Survey South) fields. We find that massive cSFGs have a comoving number density of (1.0+/-0.1)x10^-4^ Mpc^-3^. The cSFGs are distributed at nearly the same locus on the main sequence as extended star-forming galaxies (eSFGs) and dominate the high-mass end. On the rest-frame U-V versus V-J and U-B versus M_B_ diagrams, cSFGs are mainly distributed at the middle of eSFGs and compact quiescent galaxies (cQGs) in all colors, but are more inclined to "red sequence" than "green valley" galaxies. We also find that cSFGs have distributions similar to cQGs on the nonparametric morphology diagrams. The cQGs and cSFGs have larger Gini and smaller M_20_, while eSFGs have the reverse. About one-third of cSFGs show signatures of postmergers, and almost none of them can be recognized as disks. Moreover, those visually extended cSFGs all have lower Gini coefficients (Gini<0.4), indicating that the Gini coefficient could be used to clean out noncompact galaxies in a sample of candidate cSFGs. The X-ray-detected counterparts are more frequent among cSFGs than in eSFGs and cQGs, implying that cSFGs have previously experienced violent gas-rich interactions (such as major mergers or disk instabilities), which could trigger both star formation and black hole growth in an active phase.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/432/2746
- Title:
- POPSTAR models. III. Young star clusters
- Short Name:
- J/MNRAS/432/2746
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This is the third paper of a series reporting the results from the POPSTAR evolutionary synthesis models. The main goal of this work is to present and discuss the synthetic photometric properties of single stellar populations resulting from our POPSTAR code. Colours in the Johnson and Sloan Digital Sky Survey (SDSS) systems, H{alpha} and H{beta} luminosities and equivalent widths, and ionizing region size, have been computed for a wide range of metallicity (Z=0.0001-0.05) and age (0.1Myr to 20Gyr). We calculate the evolution of the cluster and the region geometry in a consistent manner. We demonstrate the importance of the contribution of emission lines to broader band photometry when characterizing stellar populations, through the presentation of both contaminated and non-contaminated colours (in both the Johnson and SDSS systems). The tabulated colours include stellar and nebular components, in addition to line emission. The main application of these models is the determination of physical properties of a given young ionizing cluster, when only photometric observations are available; for an isolated star-forming region, the young star cluster models can be used, free from the contamination of any underlying background stellar population. In most cases, however, the ionizing population is usually embedded in a large and complex system, and the observed photometric properties result from the combination of a young star-forming burst and the underlying older population of the host. Therefore, the second objective of this paper is to provide a grid of models useful in the interpretation of mixed regions where the separation of young and old populations is not sufficiently reliable. We describe the set of popstar spectral energy distributions (SEDs), and the derived colours for mixed populations where an underlying host population is combined in different mass-ratios with a recent ionizing burst. These colours, together with other common photometric parameters, such as the H{alpha} radius of the ionized region, and Balmer line equivalent widths and luminosities, allow one to infer the physical properties of star-forming regions even in the absence of spectroscopic information.
- ID:
- ivo://CDS.VizieR/J/ApJ/812/34
- Title:
- Properties of UCD candidates in M87/M49/M60 regions
- Short Name:
- J/ApJ/812/34
- Date:
- 14 Jan 2022 08:28:26
- Publisher:
- CDS
- Description:
- We use imaging from the Next Generation Virgo cluster Survey (NGVS) to present a comparative study of ultra-compact dwarf (UCD) galaxies associated with three prominent Virgo sub-clusters: those centered on the massive red-sequence galaxies M87, M49, and M60. We show how UCDs can be selected with high completeness using a combination of half-light radius and location in color-color diagrams (u*iK_s_ or u*gz). Although the central galaxies in each of these sub-clusters have nearly identical luminosities and stellar masses, we find large differences in the sizes of their UCD populations, with M87 containing ~3.5 and 7.8 times more UCDs than M49 and M60, respectively. The relative abundance of UCDs in the three regions scales in proportion to sub-cluster mass, as traced by X-ray gas mass, total gravitating mass, number of globular clusters (GCs), and number of nearby galaxies. We find that the UCDs are predominantly blue in color, with ~85% of the UCDs having colors similar to blue GCs and stellar nuclei of dwarf galaxies. We present evidence that UCDs surrounding M87 and M49 may follow a morphological sequence ordered by the prominence of their outer, low surface brightness envelope, ultimately merging with the sequence of nucleated low-mass galaxies, and that envelope prominence correlates with distance from either galaxy. Our analysis provides evidence that tidal stripping of nucleated galaxies is an important process in the formation of UCDs.
- ID:
- ivo://CDS.VizieR/J/A+A/546/A86
- Title:
- R absolute magnitudes of Kuiper Belt objects
- Short Name:
- J/A+A/546/A86
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Ever since the very first photometric studies of Centaurs and Kuiper belt objects (KBOs) their visible color distribution has been controversial. This controversy has triggered a prolific debate on the origin of the surface colors of these distant icy objects of the solar system. Two scenarios have been proposed to interpret and explain the large variability of colors, hence surface composition. Are the colors mainly primordial and directly related to the formation region, or are they the result of surface evolution processes? To date, no mechanism has been found that successfully explains why Centaurs, which are escapees from the Kuiper belt, exhibit two distinct color groups, whereas KBOs do not. We re-address this issue using a carefully compiled set of B-R colors and H_R{alpha}_ magnitudes (as proxy for size) for 253 objects, including data for 10 new small objects. We find that the bimodal color distribution of Centaurs is a size-related phenomenon, common to both Centaurs and small KBOs, i.e. independent of dynamical classification. Furthermore, we find that large KBOs also have a bimodal distribution of surface colors, albeit distinct from the small objects and strongly dependent on the `Haumea collisional family' objects. When plotted in B-R, H_R{alpha}_ space, the colors of Centaurs and KBOs display a peculiar N shape.
- ID:
- ivo://CDS.VizieR/I/279
- Title:
- Revised Luyten Half-Second Catalogue
- Short Name:
- I/279
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present refined coordinates and proper motion data for the high proper motion (HPM) stars in the Luyten Half-Second (LHS) catalogue. The positional uncertainty in the original Luyten catalogue is typically >10" and is often >30". We have used the digital scans of the Palomar Observatory Sky Survey (POSS) I and POSS II plates to derive more accurate positions and proper motions of the objects. Out of the 4470 candidates in the LHS catalogue, 4323 objects were manually re-identified in the POSS I and POSS II scans. A small fraction of the stars were not found due to the lack of finder charts and digitized POSS II scans. The uncertainties in the revised positions are typically ~2", but can be as high as ~8" in a few cases, which is a large improvement over the original data. Cross-correlation with the Tycho-2 and Hipparcos catalogues yielded 819 candidates (with m_R_<~12). For these brighter sources, the position and proper motion data were replaced with the more accurate Tycho/Hipparcos data. In total, we have revised proper motion measurements and coordinates for 4040 stars and revised coordinates for 4330 stars. In the printed version of the paper, we present the updated coordinates and proper motion information on 528 sources which represent the high proper motion subset ({mu}>1"/yr) of the LHS catalogue. The electronic version contains the updated information on all the 4470 stars in the LHS catalogue.
- ID:
- ivo://CDS.VizieR/J/ApJ/900/118
- Title:
- RSGs in the LMC & sp. follow-up for LMC & SMC
- Short Name:
- J/ApJ/900/118
- Date:
- 20 Jan 2022 11:32:23
- Publisher:
- CDS
- Description:
- The binary fraction of unevolved massive stars is thought to be 70%-100% but there are few observational constraints on the binary fraction of the evolved version of a subset of these stars, the red supergiants (RSGs). Here we identify a complete sample of RSGs in the Large Magellanic Cloud (LMC) using new spectroscopic observations and archival UV, IR, and broadband optical photometry. We find 4090 RSGs with logL/L_{sun}_>3.5, with 1820 of them having logL/L_{sun}_>4, which we believe is our completeness limit. We additionally spectroscopically confirmed 38 new RSG + B-star binaries in the LMC, bringing the total known up to 55. We then estimated the binary fraction using a k-nearest neighbors algorithm that classifies stars as single or binary based on photometry with a spectroscopic sample as a training set. We take into account observational biases such as line-of-sight stars and binaries in eclipse while also calculating model- dependent corrections for RSGs with companions that our observations were not designed to detect. Based on our data, we find an initial result of 13.5_-6.67_^+7.56^% for RSGs with O- or B-type companions. Using the Binary Population and Spectral Synthesis models to correct for unobserved systems, this corresponds to a total RSG binary fraction of 19.5_-6.7_^+7.6^% . This number is in broad agreement with what we would expect given an initial OB binary distribution of 70%, a predicted merger fraction of 20%-30%, and a binary interaction fraction of 40%-50%.
- ID:
- ivo://CDS.VizieR/II/47
- Title:
- Scanner Abundance in late-type evolved stars
- Short Name:
- II/47
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Abundance parameters have been derived from scanner observations of 229 stars. Observations were made with the Wampler photoelectric spectrum scanner (Wampler, 1966) on Lick Observatory's Crossley and 120inch telescopes. Data reductions were performed at UC Berkeley on the IBM 7094 computer using programs by L.V. Kuhi and B.J. Taylor. The method of reduction and the photometric standard system are described by Spinrad and Taylor (1969AJ.....72..320S). The file "color.dat" (tables 5 and 6 in the publication) gives colors between 3880 and 7400{AA} for program stars and survey stars, normalized so that I(5360)=1000. The file "block.dat" gives the blocking fractions for program stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/888/36
- Title:
- SDSS/FIRST dwarf galaxies with VLA high res. obs.
- Short Name:
- J/ApJ/888/36
- Date:
- 25 Oct 2021 10:17:58
- Publisher:
- CDS
- Description:
- We present a sample of nearby dwarf galaxies with radio-selected accreting massive black holes (BHs), the majority of which are non-nuclear. We observed 111 galaxies using sensitive, high-resolution observations from the Karl G. Jansky Very Large Array (VLA) in its most extended A-configuration at X band (~8-12GHz), yielding a typical angular resolution of ~0.25" and rms noise of ~15{mu}Jy. Our targets were selected by crossmatching galaxies with stellar masses M_*_<=3x10^9^M_{sun}_ and redshifts z<0.055 in the NASA-Sloan Atlas with the VLA Faint Images of the Radio Sky at Twenty centimeters Survey. With our new high-resolution VLA observations, we detect compact radio sources toward 39 galaxies and carefully evaluate possible origins for the radio emission, including thermal HII regions, supernova remnants, younger radio supernovae, background interlopers, and active galactic nuclei (AGNs) in the target galaxies. We find that 13 dwarf galaxies almost certainly host active massive BHs, despite the fact that only one object was previously identified as having optical signatures of an AGN. We also identify a candidate dual radio AGN in a more massive galaxy system. The majority of the radio-detected BHs are offset from the center of the host galaxies, with some systems showing signs of interactions/mergers. Our results indicate that massive BHs need not always live in the nuclei of dwarf galaxies, confirming predictions from simulations. Moreover, searches attempting to constrain BH seed formation using observations of dwarf galaxies need to account for such a population of "wandering" BHs.
- ID:
- ivo://CDS.VizieR/J/MNRAS/440/3430
- Title:
- SDSS-2MASS-WISE stellar colour locus
- Short Name:
- J/MNRAS/440/3430
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the fiducial main-sequence stellar locus traced by 10 photometric colours observed by Sloan Digital Sky Survey (SDSS), Two Micron All Sky Survey (2MASS), and Wide-field Infrared Survey Explorer} (WISE). Median colours are determined using 1052 793 stars with r-band extinction less than 0.125. We use this locus to measure the dust extinction curve relative to the r band, which is consistent with previous measurements in the SDSS and 2MASS bands. The WISE band extinction coefficients are larger than predicted by standard extinction models. Using 13 lines of sight, we find variations in the extinction curve in H, Ks, and WISE bandpasses. Relative extinction decreases towards Galactic anticentre, in agreement with prior studies. Relative extinction increases with Galactic latitude, in contrast to previous observations. This indicates a universal mid-IR extinction law does not exist due to variations in dust grain size and chemistry with Galactocentric position. A preliminary search for outliers due to warm circumstellar dust is also presented, using stars with high signal-to-noise ratio in the W3 band. We find 199 such outliers, identified by excess emission in Ks-W3. Inspection of SDSS images for these outliers reveals a large number of contaminants due to nearby galaxies. Six sources appear to be genuine dust candidates, yielding a fraction of systems with infrared excess of 0.12+/-0.05 per cent.
- ID:
- ivo://CDS.VizieR/J/ApJ/886/27
- Title:
- SNe IIP progenitors. I. LMC giant comparison sample
- Short Name:
- J/ApJ/886/27
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the evolution of massive star progenitors of supernovae of type IIP. We take the example of the nearby and well-studied SN2013ej. We explore how convective overshoot affects the stellar structure, surface abundances, and effective temperature of massive stars, using the Modules for Experiments in Stellar Astrophysics. In particular, models with moderate overshoot (f=0.02-0.031) show the presence of blue loops in the Hertzsprung-Russell diagram with a red to blue excursion (log_10_[Teff/K] from <3.6 to >4.0) and transition back to red, during the core helium-burning phase. Models with overshoot outside this range of f values kept the star in the red supergiant state throughout the post-helium-ignition phases. The surface CNO abundance shows enrichment post-main-sequence and again around the time when helium is exhausted in the core. These evolutionary changes in surface CNO abundance are indistinguishable in the currently available observations due to large observational uncertainties. However, these observations may distinguish between the ratio of surface nitrogen to oxygen at different evolutionary stages of the star. We also compare the effects of convective overshoot on various parameters related to likelihood of explosion of a star as opposed to collapse to a black hole. These parameters are the compactness parameter, M_4_, and {mu}_4_. The combination {mu}_4_xM_4_, and {mu}_4_ have similar variations with f and both peak at f=0.032. We find that all of our 13M_{sun}_ models are likely to explode.