- ID:
- ivo://CDS.VizieR/J/ApJ/854/12
- Title:
- 16yrs of radial velocity measurements of S0-2
- Short Name:
- J/ApJ/854/12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The star S0-2, which orbits the supermassive black hole (SMBH) in our Galaxy with a period of 16 years, provides the strongest constraint on both the mass of the SMBH and the distance to the Galactic center. S0-2 will soon provide the first measurement of relativistic effects near a SMBH. We report the first limits on the binarity of S0-2 from radial velocity (RV) monitoring, which has implications for both understanding its origin and robustness as a probe of the central gravitational field. With 87 RV measurements, which include 12 new observations that we present, we have the requisite data set to look for RV variations from S0-2's orbital model. Using a Lomb-Scargle analysis and orbit- fitting for potential binaries, we detect no RV variation beyond S0-2's orbital motion and do not find any significant periodic signal. The lack of a binary companion does not currently distinguish different formation scenarios for S0-2. The upper limit on the mass of a companion star (M_comp_) still allowed by our results has a median upper limit of M_comp_ sin i <=1.6M_{sun}_ for periods between 1 and 150 days, the longest period to avoid tidal break-up of the binary. We also investigate the impact of the remaining allowed binary system on the measurement of the relativistic redshift at S0-2's closest approach in 2018. While binary star systems are important to consider for this experiment, we find that plausible binaries for S0-2 will not alter a 5{sigma} detection of the relativistic redshift.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/821/89
- Title:
- 12yrs of radial velocity obs. of exoplanet systems
- Short Name:
- J/ApJ/821/89
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We conducted a Doppler survey at Keck combined with NIRC2 K-band adaptive optics (AO) imaging to search for massive, long-period companions to 123 known exoplanet systems with one or two planets detected using the radial velocity (RV) method. Our survey is sensitive to Jupiter-mass planets out to 20au for a majority of stars in our sample, and we report the discovery of eight new long-period planets, in addition to 20 systems with statistically significant RV trends that indicate the presence of an outer companion beyond 5AU. We combine our RV observations with AO imaging to determine the range of allowed masses and orbital separations for these companions, and account for variations in our sensitivity to companions among stars in our sample. We estimate the total occurrence rate of companions in our sample to be 52+/-5% over the range 1-20M_Jup_ and 5-20AU. Our data also suggest a declining frequency for gas giant planets in these systems beyond 3-10AU, in contrast to earlier studies that found a rising frequency for giant planets in the range 0.01-3AU. This suggests either that the frequency of gas giant planets peaks between 3 and 10 AU, or that outer companions in these systems have a different semi-major axis distribution than the overall population of gas giant planets. Our results also suggest that hot gas giants may be more likely to have an outer companion than cold gas giants. We find that planets with an outer companion have higher average eccentricities than their single counterparts, suggesting that dynamical interactions between planets may play an important role in these systems.
- ID:
- ivo://CDS.VizieR/J/ApJS/253/10
- Title:
- 12yrs of R-band photometry of the quasar 3C 454.3
- Short Name:
- J/ApJS/253/10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this work, we present 8523 pairs of R-band optical photometry observations for the quasar 3C 454.3 made during the period of 2006 October - 2018 February on the 70cm meniscus telescope at Abastumani Observatory, Georgia, to study its intraday variabilities (IDVs) and long-term variations, and we have come to the following results. (1) We detected 10 outbursts, a {Delta}R=3.825mag variation, and some IDVs. The IDV timescales are from 4.1 to 285 minutes, with the corresponding variability amplitude being A=2.9%-43.67%. The amplitude increases with IDV timescale. (2) The largest variation over a 1 day timescale is {Delta}R=1.38mag. (3) The IDV timescales suggest that the emission sizes are from 8.9x10^13^cm to 6.20x10^15^cm, and the magnetic field strengths are B=0.18-0.79G. (4) Period analysis results show three possible long-term periods, p=3.04+/-0.02yr, p=1.66+/-0.06yr, and p=1.20+/-0.03yr in the optical light curve. We adopted the accretion disk models and the lighthouse models to period p=3.04+/-0.02yr: in the accretion disk models, the binary black holes have masses M=1.17x10^9^M_{sun}_; in the lighthouse models, we used two boosted jet flux densities to fit the observational light curve. (5) WWZ analysis gives some short-period (high-frequency) signals associated with strong bursts (JD2454302 and JD2454521) with variable frequencies and lasting for the entire observation time span (11.3yr).
- ID:
- ivo://CDS.VizieR/J/ApJ/884/92
- Title:
- 7yrs of VRI obs. of S5 0716+714 and its flares
- Short Name:
- J/ApJ/884/92
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The typical blazar S5 0716+714 is very interesting due to its rapid and large-amplitude variability and high duty cycle of microvariability in the optical band. We analyze the observations in the I, R, and V bands obtained with the 1.0m telescope at Weihai observatory of Shandong University from 2011 to 2018. The model of synchrotron radiation from turbulent cells in a jet has been proposed as a mechanism for explaining microvariability seen in blazar light curves. Parameters such as the sizes of turbulent cells, the enhanced particle densities, and the location of the turbulent cells in the jet can be studied using this model. The model predicts a time lag between variations, as observed in different frequency bands. An automatic model fitting method for microvariability is developed, and the fitting results of our multi-frequency microvariability observations support the model. The results show that both the amplitude and duration of flares decomposed from the microvariability light curves conform to the log-normal distribution. The turbulent cell size is within the range of about 5-55au, and the time lags of the microvariability flares between the I-R and R-V bands should be several minutes. The time lags obtained from the turbulence model are consistent with the fitting statistical results, and the time lags of flares are correlated with the time lags of the whole light curve.
- ID:
- ivo://CDS.VizieR/J/ApJ/848/103
- Title:
- ~1.5yr Swift observations of Mrk 421
- Short Name:
- J/ApJ/848/103
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of the Swift observations of the nearby BL Lac object Mrk421 during 2013 November-2015 June. The source exhibited a strong long-term variability in the 0.3-10keV band, with a maximum-to-minimum flux ratio of 13, and underwent X-ray flares by a factor of 1.8-5.2 on timescales of a few weeks or shorter. The source showed 48 instances of intraday flux variability in this period, which sometimes was observed within the 1 ks observational run. It was characterized by fractional amplitudes of 1.5(0.3)%-38.6(0.4)% and flux doubling/halving times of 2.6-20.1hr. The X-ray flux showed a lack of correlation with the TeV flux on some occasions (strong TeV flares were not accompanied by comparable X-ray activity and vice versa), indicating that the high-energy emission in Mrk421 was generated from an emission region more complex than a single zone. The best fits of the 0.3-10keV spectra were mainly obtained using the log-parabola model, showing a strong spectral variability that generally followed a "harder-when-brighter" trend. The position of the synchrotron spectral energy distribution peak showed an extreme range from a few eV to ~10keV that happens rarely in blazars.
- ID:
- ivo://CDS.VizieR/J/A+A/647/A116
- Title:
- YSO candidate catalog from ANN
- Short Name:
- J/A+A/647/A116
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Observed young stellar objects (YSOs) are used to study star formation and characterize star-forming regions. For this purpose, YSO candidate catalogs are compiled from various surveys, especially in the infrared (IR), and simple selection schemes in color-magnitude diagrams (CMDs) are often used to identify and classify YSOs. We propose a methodology for YSO classification through machine learning (ML) using Spitzer IR data. We detail our approach in order to ensure reproducibility and provide an in-depth example on how to efficiently apply ML to an astrophysical classification. We used feed forward artificial neural networks (ANNs) that use the four IRAC bands (3.6, 4.5, 5.8, and 8 micron) and the 24 micron MIPS band from Spitzer to classify point source objects into CI and CII YSO candidates or as contaminants. We focused on nearby (~1kpc) star-forming regions including Orion and NGC 2264, and assessed the generalization capacity of our network from one region to another. We found that ANNs can be efficiently applied to YSO classification with a contained number of neurons (~25). Knowledge gathered on one star-forming region has shown to be partly efficient for prediction in new regions. The best generalization capacity was achieved using a combination of several star-forming regions to train the network. Carefully rebalancing the training proportions was necessary to achieve good results. We observed that the predicted YSOs are mainly contaminated by under-constrained rare subclasses like Shocks and polycyclic aromatic hydrocarbons (PAHs), or by the vastly dominant other kinds of stars (mostly on the main sequence). We achieved above 90% and 97% recovery rate for CI and CII YSOs, respectively, with a precision above 80% and 90% for our most general results. We took advantage of the great flexibility of ANNs to define, for each object, an effective membership probability to each output class. Using a threshold in this probability was found to efficiently improve the classification results at a reasonable cost of object exclusion. With this additional selection, we reached 90% and 97% precision on CI and CII YSOs, respectively, for more than half of them. Our catalog of YSO candidates in Orion (365 CI, 2381 CII) and NGC 2264 (101 CI, 469 CII) predicted by our final ANN, along with the class membership probability for each object, is publicly available at the CDS. Compared to usual CMD selection schemes, ANNs provide a possibility to quantitatively study the properties and quality of the classification. Although some further improvement may be achieved by using more powerful ML methods, we established that the result quality depends mostly on the training set construction. Improvements in YSO identification with IR surveys using ML would require larger and more reliable training catalogs, either by taking advantage of current and future surveys from various facilities like VLA, ALMA, or Chandra, or by synthesizing such catalogs from simulations.
- ID:
- ivo://CDS.VizieR/J/ApJS/240/26
- Title:
- YSO candidates in Canis Major OB1 association
- Short Name:
- J/ApJS/240/26
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study a very young star-forming region in the outer Galaxy that is the most concentrated source of outflows in the Spitzer Space Telescope GLIMPSE360 survey. This region, dubbed CMa-l224, is located in the Canis Major OB1 association. CMa-l224 is relatively faint in the mid-infrared, but it shines brightly at the far-infrared wavelengths as revealed by the Herschel Space Observatory data from the Hi-GAL survey. Using the 3.6 and 4.5{mu}m data from the Spitzer/GLIMPSE360 survey, combined with the JHKs Two Micron All Sky Survey (2MASS) and the 70-500{mu}m Herschel/Hi-GAL data, we develop young stellar object (YSO) selection criteria based on color-color cuts and fitting of the YSO candidates' spectral energy distributions with YSO 2D radiative transfer models. We identify 293 YSO candidates and estimate physical parameters for 210 sources well fit with YSO models. We select an additional 47 sources with GLIMPSE360-only photometry as "possible YSO candidates." The vast majority of these sources are associated with high H2 column density regions and are good targets for follow-up studies. The distribution of YSO candidates at different evolutionary stages with respect to Herschel filaments supports the idea that stars are formed in the filaments and become more dispersed with time. Both the supernova-induced and spontaneous star formation scenarios are plausible in the environmental context of CMa-l224. However, our results indicate that a spontaneous gravitational collapse of filaments is a more likely scenario. The methods developed for CMa-l224 can be used for larger regions in the Galactic plane where the same set of photometry is available.
- ID:
- ivo://CDS.VizieR/J/ApJ/770/1
- Title:
- YSO candidates in G38.9-0.4 region
- Short Name:
- J/ApJ/770/1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a study of the star formation (SF) region G38.9-0.4 using publicly available multiwavelength Galactic plane surveys from ground- and space-based observatories. This region is composed of four bright mid-IR bubbles and numerous infrared dark clouds. Two bubbles, N 74 and N 75, each host a star cluster anchored by a single O9.5V star. We identified 162 young stellar objects (YSOs) and classify 54 as stage I, 7 as stage II, 6 as stage III, and 32 as ambiguous. We do not detect the classical signposts of triggered SF, i.e., star-forming pillars or YSOs embedded within bubble rims. We conclude that feedback-triggered SF has not occurred in G38.9-0.4. The YSOs are preferentially coincident with infrared dark clouds. This leads to a strong correlation between areal YSO mass surface density and gas mass surface density with a power law slope near 1.3, which closely matches the Schmidt-Kennicutt Law. The correlation is similar inside and outside the bubbles and may mean that the SF efficiency is neither enhanced nor suppressed in regions potentially influenced by stellar feedback. This suggests that gas density, regardless of how it is collected, is a more important driver of SF than stellar feedback. Larger studies should be able to quantify the fraction of all SF that is feedback-triggered by determining the fraction SF, feedback-compressed gas surrounding H II regions relative to that already present in molecular clouds.
- ID:
- ivo://CDS.VizieR/J/A+A/599/A37
- Title:
- YSO candidates in IRAS 20319+3958
- Short Name:
- J/A+A/599/A37
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Globules and pillars, impressively revealed by the Spitzer and Herschel satellites, for example, are pervasive features found in regions of massive star formation. Studying their embedded stellar populations can provide an excellent laboratory to test theories of triggered star formation and the features that it may imprint on the stellar aggregates resulting from it. We studied the globule IRAS 20319+3958 in Cygnus X by means of visible and near-infrared imaging and spectroscopy, complemented with mid-infrared Spitzer/IRAC imaging, in order to obtain a census of its stellar content and the nature of its embedded sources. Our observations show that the globule contains an embedded aggregate of about 30 very young (<~1Myr) stellar objects, for which we estimate a total mass of ~90M_{sun}_. The most massive members are three systems containing early B-type stars. Two of them most likely produced very compact HII regions, one of them being still highly embedded and coinciding with a peak seen in emission lines characterising the photon dominated region (PDR). Two of these three systems are resolved binaries, and one of those contains a visible Herbig Be star. An approximate derivation of the mass function of the members of the aggregate gives hints of a slope at high masses shallower than the classical Salpeter slope, and a peak of the mass distribution at a mass higher than that at which the widely adopted log-normal initial mass function peaks. The emission distribution of H_2_ and Brackett gamma, tracing the PDR and the ionised gas phase, respectively, suggests that molecular gas is distributed as a shell around the embedded aggregate, filled with centrally-condensed ionised gas. Both, the morphology and the low excitation of the HII region, indicate that the sources of ionisation are the B stars of the embedded aggregate, rather than the external UV field caused by the O stars of Cygnus OB2. The youth of the embedded cluster, combined with the isolation of the globule, suggests that star formation in the globule was triggered by the passage of the ionisation front.
22030. YSO candidates in M17 SWex
- ID:
- ivo://CDS.VizieR/J/ApJ/714/L285
- Title:
- YSO candidates in M17 SWex
- Short Name:
- J/ApJ/714/L285
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Through analysis of archival images and photometry from the Spitzer GLIMPSE and MIPSGAL surveys combined with Two Micron All Sky Survey and MSX data, we have identified 488 candidate young stellar objects (YSOs) in the giant molecular cloud M17 SWex, which extends ~50pc southwest from the prominent Galactic HII region M17. Our sample includes >200 YSOs with masses >3M_{sun}_ that will become B-type stars on the main sequence. Extrapolating over the stellar initial mass function (IMF), we find that M17 SWex contains >1.3x10^4^ young stars, representing a proto-OB association. The YSO mass function is significantly steeper than the Salpeter IMF, and early O stars are conspicuously absent from M17 SWex. Assuming M17 SWex will form an OB association with a Salpeter IMF, these results reveal the combined effects of (1) more rapid circumstellar disk evolution in more massive YSOs and (2) delayed onset of massive star formation.