We present a Chandra X-ray observation of the X-ray bright E2 elliptical galaxy NGC 4649. In addition to bright diffuse emission, we resolve 165 discrete sources, most of which are presumably low-mass X-ray binaries. As found in previous studies, the luminosity function of the resolved sources is well-fitted by a broken power law. In NGC 4697 and NGC 1553, the break luminosity was comparable to the Eddington luminosity of a 1.4M_{sun}_ neutron star.
We used the Chandra X-Ray Observatory ACIS-S3 to image the X-ray-faint elliptical galaxy NGC 4365 and lenticular galaxy NGC 4382. The observations resolve much of the X-ray emission into 99 and 58 sources, respectively, most of which are low-mass X-ray binaries (LMXBs) associated with each of the galaxies. Within one effective radius of NGC 4365, about 45% of the counts are resolved into sources, 30% are attributed to unresolved LMXBs, and 25% are attributed to diffuse gas. Within two effective radii of NGC 4382, about 22% of the counts are resolved into sources, 33% are attributed to unresolved LMXBs, and 45% are attributed to diffuse gas. We identify 18 out of the 37 X-ray sources in a central field in NGC 4365 with globular clusters.
We present comprehensive X-ray point source catalogs of NGC55, NGC2403, and NGC4214 as part of the Chandra Local Volume Survey. The combined archival observations have effective exposure times of 56.5ks, 190ks, and 79ks for NGC55, NGC2403, and NGC4214, respectively. When combined with our published catalogs for NGC300 and NGC404, our survey contains 629 X-ray sources total down to a limiting unabsorbed luminosity of ~5x10^35^erg/s in the 0.35-8keV band in each of the five galaxies. We present X-ray hardness ratios, spectral analysis, radial source distributions, and an analysis of the temporal variability for the X-ray sources detected at high significance. To constrain the nature of each X-ray source, we carried out cross-correlations with multi-wavelength data sets. We searched overlapping Hubble Space Telescope observations for optical counterparts to our X-ray detections to provide preliminary classifications for each X-ray source as a likely X-ray binary, background active galactic nucleus, supernova remnant, or foreground star.
We present a comprehensive X-ray point-source catalog of NGC 404 obtained as part of the Chandra Local Volume Survey. A new 97ks Chandra ACIS-S observation of NGC 404 was combined with archival observations for a total exposure of ~123ks. Our survey yields 74 highly significant X-ray point sources and is sensitive to a limiting unabsorbed luminosity of ~6x10^35^erg/s in the 0.35-8keV band. To constrain the nature of each X-ray source, cross-correlations with multi-wavelength data were generated. We searched overlapping Hubble Space Telescope observations for optical counterparts to our X-ray detections, but find only two X-ray sources with candidate optical counterparts. We find 21 likely low-mass X-ray binaries (LMXBs), although this number is a lower limit due to the difficulties in separating LMXBs from background active galactic nuclei. The X-ray luminosity functions (XLFs) in both the soft and hard energy bands are presented. The XLFs in the soft band (0.5-2keV) and the hard band (2-8keV) have a limiting luminosity at the 90% completeness limit of 10^35^erg/s and 10^36^erg/s, respectively, significantly lower than previous X-ray studies of NGC 404. We find the XLFs to be consistent with those of other X-ray populations dominated by LMXBs. However, the number of luminous (>10^37^erg/s) X-ray sources per unit stellar mass in NGC 404 is lower than is observed for other galaxies. The relative lack of luminous XRBs may be due to a population of LMXBs with main-sequence companions formed during an epoch of elevated star formation ~0.5Gyr ago.
A 50ks Chandra observation of the unidentified TeV source in Cygnus reported by the HEGRA collaboration reveals no obvious diffuse X-ray counterpart. However, 240 point-like X-ray sources are detected within or nearby the extended TeV J2032+4130 source region, of which at least 36 are massive stars and two may be radio emitters. That the HEGRA source is a composite, having as a counterpart the multiple point-like X-ray sources we observe, cannot be ruled out. Indeed, the distribution of point-like X-ray sources appears nonuniform and concentrated broadly within the extent of the TeV source region. We offer a hypothesis for the origin of the very high energy gamma-ray emission in Cyg OB2 based on the local acceleration of TeV-range cosmic rays and the differential distribution of OB versus less massive stars in this association.
We present our long-term Chandra X-ray monitoring data for the gravitationally lensed quasar Q2237+0305 with 20 epochs spanning 10 years. We easily detect microlensing variability between the images in the full (0.2-8keV), soft (0.2-2keV), and hard (2-8keV) bands at very high confidence. We also detect, for the first time, chromatic microlensing differences between the soft and hard X-ray bands. The hard X-ray band is more strongly microlensed than the soft band, suggesting that the corona above the accretion disk thought to generate the X-rays has a non-uniform electron distribution, in which the hotter and more energetic electrons occupy more compact regions surrounding the black holes. Both the hard and soft X-ray bands are more strongly microlensed than the optical (rest-frame UV) emission, indicating that the X-ray emission is more compact than the optical, confirming the microlensing results from other lenses.
Chandra multi-epoch study of the spiral gal. NGC7331
Short Name:
J/ApJ/879/112
Date:
21 Oct 2021
Publisher:
CDS
Description:
X-ray point sources in galaxies are dominated by X-ray binaries (XRBs) that are variables or transients, and whether their variability would alter the X-ray luminosity functions (XLFs) is still in debate. Here we report on NGC 7331 as an example to test this with seven Chandra observations. Their detection limit is 7x10^37^erg/s in the energy range 0.3-8.0keV by assuming a power-law (PL) spectral model with a photon index of 1.7. We detected 55 X-ray sources. Thirteen of them are variables, of which three are transients, and some of the sources possess a bimodal feature in their luminosity-hardness ratio, which is often observed among XRBs. Nine more ultraluminous X-ray sources are found in comparison with previous studies and eight are likely to be low-mass or high-mass XRBs. Twenty-one optical counterpart candidates are found based on the Hubble Space Telescope images, but we cannot rule out the possibility of positional coincidence. The spectral analysis of SN 2014C shows a trend of increasing soft photons and decreasing hydrogen column densities as its outer shell expands. We fit the seven incompleteness-corrected XLFs to both a PL and a PL with an exponential cut-off (PLC) model using the Bayesian method, which is used for the first time in XLF fitting. The hierarchical PLC model can describe the XLF of NGC 7331 best with a slope of ~0.5 and a luminosity cut-off around 8x10^38^erg/s. This study proves that multi-epoch observations decrease the deviation due to the variable luminous sources in XLFs.
We have investigated 136 Chandra extragalactic sources, including 93 galaxies with narrow emission lines (NELGs) and 43 with only absorption lines (ALGs). Based on fX/fO, LX, X-ray spectral hardness, and optical emission-line diagnostics, we have conservatively classified 36 normal galaxies and 71 AGNs. Their redshift ranges from 0.01 to 1.2, with normal galaxies in the range z=0.01-0.3. Our normal galaxies appear to share characteristics with local galaxies, as expected from the X-ray binary populations and the hot interstellar matter (ISM). In conjunction with normal galaxies found in other surveys, we found no statistically significant evolution in LX/LB, within the limited z range (<~0.1).
We present the results of a 47-ks Chandra/ACIS observation of the old open cluster M67. We detected 25 proper-motion cluster members (including ten new sources) and 12 sources (all new) that we suspect to be members from their locations close to the main sequence (1<B-V<1.7). Of the detected members, 23 are binaries.
We present six monitoring observations of the starburst galaxy NGC 2146 using the Chandra X-ray Observatory. We detected 67 point sources in the field of view of the ACIS-S detector. Six of these sources were Ultra-Luminous X-ray Sources, the brightest of which had a luminosity of 5x10^39^erg/s. One of them, with a luminosity of ~1x10^39^erg/s, is coincident with the dynamical center location, which may be a low-luminosity active galactic nucleus. We have produced a table where the positions and main characteristics of the detected sources are reported. A comparison between the positions of the X-ray sources and those detected in NIR or radio indicates no definite counterpart. We have derived a logN-logS relation and a luminosity function. The luminosity function has a slope of 0.71 above a detection limit, which is similar to those found in other starburst galaxies. Diffuse emissions were detected in both soft (0.5-2.0keV) and hard (2.0-10.0keV) energy bands. The spectra of the diffuse component were fitted with two (hard and soft) components. The hard power-law component, with a luminosity of ~4x10^39^erg/s, is likely to have originated by unresolved point sources.