- ID:
- ivo://nasa.heasarc/vlahdf20cm
- Title:
- VLA Hubble Deep Field 20-cm Source Catalog
- Short Name:
- VLAHDF20CM
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The authors have conducted a deep radio survey with the Very Large Array (VLA) at 1.4 GHz of a region containing the Hubble Deep Field (HDF). This survey overlaps previous observations at 8.5 GHz allowing them to investigate the radio spectral properties of microJansky sources to flux densities greater than 40 µJy (µJy) at 1.4 GHz and greater than 8 uJy at 8.5 GHz. A total of 371 sources have been catalogued at 1.4 GHz as part of a complete sample within 20 arcminutes of the HDF. The differential source count for this region is only marginally sub-Euclidean and is given by n(S) = (8.3 +/- 0.4) S^(-2.4 +/- 0.1) sr<sup>-1</sup> Jy<sup>-1</sup>. Above about 100 uJy the radio source count is systematically lower in the HDF as compared to other fields. The authors conclude that there is clustering in this radio sample on size scales of 1 to 40 arcminutes. The 1.4 GHz-selected sample shows that the radio spectral indices are preferentially steep (mean spectral index of 0.85) and that the sources are moderately extended with average angular size Theta = 1.8". Optical identification with disk-type systems at z ~ 0.1 - 1 suggests that synchrotron emission, produced by supernovae remnants, is powering the radio emission in the majority of sources. In 1996 November, the authors observed a field centered on the Hubble Deep Field (RA, Dec (J2000.0) = (12<sup>h</sup> 36<sup>m</sup> 49.4<sup>s</sup>, 62<sup>o</sup> 12' 58.00") for a total of 50 hours at 20 cm in the A configuration of the VLA. They reached an rms noise level near the center of the field of 7.5 uJy. They adopted 40 uJy as the formal completeness limit over the entire 1 degree field in their untapered naturally weighted 2 arcseconds image. The authors identified 314 sources within 20 arcminutes of the field center (20% power contour). They found 57 additional sources within this same region (presumably resolved at 2" resolution) in lower resolution (3.5 and 6") tapered images above completeness levels of 50 uJy at 3.5" resolution and 75 uJy at 6" resolution, making a grand total of 371 radio sources detected at 1.4 GHz within 20 arcminutes of the phase center of the field. This table was created by the HEASARC in June 2012 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJ/533/611">CDS Catalog J/ApJ/533/611</a> file table2.dat. This is a service provided by NASA HEASARC .
Number of results to display per page
Search Results
- ID:
- ivo://nasa.heasarc/vlalhn3ghz
- Title:
- VLA Lockman Hole 3-GHz Radio Source Catalog
- Short Name:
- VLALHN3GHZ
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table is from the second of two papers describing the observations and source catalogs derived from sensitive 3-GHz images of the Lockman Hole North using the Karl G. Jansky Very Large Array (VLA). In their paper, the authors describe the reduction and cataloguing process, which yielded an image with 8-arcsecond resolution and instrumental noise of sigma<sub>n</sub> = 1.01 µJy/beam (µJy/beam) rms (before primary beam corrections) and a catalog of 558 sources detected above 5 * sigma<sub>n</sub>. The authors also include details of how they estimate source spectral indices across the 2-GHz VLA bandwidth, finding a median index of -0.76 +/- 0.04. Stacking of source spectra reveals a flattening of spectral index with decreasing flux density. In the reference paper, the authors present a source count derived from the catalog. They show a traditional count estimate compared with a completely independent estimate made via a P(D) confusion analysis, and find very good agreement. Cross-matches of the catalog with X-ray, optical, infrared, radio, and redshift catalogs are also presented. The X-ray, optical and infrared data, as well as AGN selection criteria allow them to classify 10% as radio-loud AGN, 28% as radio-quiet AGN, and 58% as star-forming galaxies, with only 4% unclassified. Observations were made with the VLA in the C configuration at S band, with a frequency range of 2 to 4GHz, with a total of roughly 50 hours of on-source time in 2012. The HEASARC has converted the radio and IR flux density units from those given in the original table (µJy and µJy/beam) to its standard units for radio flux densities (mJy and mJy/beam). This table was created by the HEASARC in April 2017 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/MNRAS/462/2934">CDS Catalog J/MNRAS/462/2934</a> files cat3ghz.dat and catcrx.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/vlalh1400m
- Title:
- VLA Lockman Hole 1400-MHz Radio Source Catalog
- Short Name:
- VLALH1400M
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- In the run-up to routine observations with the upcoming generation of radio facilities, the nature of the sub-mJy radio population has been hotly debated. In this paper, the authors describe multi-frequency data designed to probe the emission mechanism that dominates in these faint radio sources. Their analysis is based on observations of the Lockman Hole (LH) using the Giant Metrewave Radio Telescope (GMRT) near Pune, India - the deepest 610-MHz imaging yet reported - together with 1.4-GHz imaging from the Very Large Array (VLA), which are well matched in resolution and sensitivity to the GMRT data: sigma<sub>610MHz</sub> ~ 15 µJy/beam (µJy/beam), sigma}<sub>1.4GHz</sub> ~ 6 µJy/beam, and full width at half-maximum (FWHM) ~ 5 arcseconds. The GMRT and VLA data are cross-matched to obtain the radio spectral indices for the faint radio emitters. During six 12-hr sessions in 2006 February and July, the authors obtained data at 610 MHz for three pointings (FWHM ~ 43 arcminutes) in the LH (see Table 1 of the reference paper for full details), separated by 11 arcminutes (the LOCKMAN-E, LOCK-3 and LHEX-4 fields), typically with 28 of the 30 antennas that comprise the GMRT. The total integration time in each field, after overheads, was 16 hr. The final image had a noise level in the central 100 arcmin<sup>2</sup> of 14.7 µJy/beam, the deepest map reported at 610 MHz as of the date of publication, despite the modest integration time. New and archival data were obtained at the same three positions using the National Radio Astronomy Observatory's VLA, largely in its B configuration. This table contains 1450 sources found in the LH field at 1400 MHz by the VLA. For 17 of the sources which have multiple components, the 29 individual components are listed as well. Thus, the final table contains 1479 (1450 + 29) entries. Source extraction was based on criteria of peak brightness > 5 times the local rms and integrated flux density > 3 times the local rms. This table was created by the HEASARC in February 2012 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/MNRAS/397/281">CDS Catalog J/MNRAS/397/281</a> file table4.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/skyview/vlss
- Title:
- VLA Low-frequency Sky Survey
- Short Name:
- VLSS
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The VLA Low-Frequency Sky Survey (VLSS) is a 74 MHz continuum survey covering the entire sky north of -30 degrees declination. Using the VLA in BnA and B-configurations, it will map the entire survey region at a resolution of 80" and with an average rms noise of 0.1 Jy/beam. <p> This version include the data from the VLSS redux which increased the coverage region slightly and substantially improved the data reduction. Details are in the Lane et al. (2012) reference. Provenance: <b>VLSS Team: </b>R.A. Perley, J.J. Condon, W.D. Cotton (NRAO); A.S. Cohen, W.M. Lane (NRC/NRL), N.E. Kassim, T.J.W. Lazio (NRL), W.C. Erickson (UMd). This is a service of NASA HEASARC.
- ID:
- ivo://nasa.heasarc/vlssr
- Title:
- VLA Low-Frequency Sky Survey Redux Source Catalog
- Short Name:
- VLSSR
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The Very Large Array (VLA) Low-Frequency Sky Survey (VLSS: see Cohen et al. 2007, AJ, 134, 1245) covers 95% of the 3 pi sr of sky area above -30 degrees Declination at most RAs (complete above -10 degrees Declination, while in some areas data are available down to Declinations of -36 degrees) at a frequency of 74 MHz, a resolution of 80", and an average rms map sensitivity of sigma ~ 0.130 Jy/beam. The survey was intended to serve as a low-frequency counterpart to the National Radio Astronomy Observatory (NRAO)-VLA Sky Survey (NVSS) at 1400 MHz, allowing spectral information to be compiled for statistical samples of sources. It also provides a low-frequency sky model. In their 2012 and 2014 reference papers, the authors present the details of improvements to data processing and analysis which were used for a re-reduction of the VLSS data, which they dub the VLSS redux or VLSSr. They used the VLSS catalogue as a sky model to correct the ionospheric distortions in the data and create a new set of sky maps and corresponding catalog at 73.8 MHz. The VLSS Redux (VLSSr) has a resolution of 75", and an average map rms noise level of sigma ~ 0.1 Jy beam<sup>-1</sup>. The clean bias is 0.66 x sigma and the theoretical largest angular size is 36 arcminutes. Six previously unimaged fields are included in the VLSSr, which has an unbroken sky coverage over 9.3 steradian above an irregular southern boundary. The final catalog includes 92,965 sources (in the abstract of Lane et al. (2014) it states 92.964 sources). The VLSSr improves upon the original VLSS in a number of areas including imaging of large sources, image sensitivity, and clean bias; however the most critical improvement is the replacement of an inaccurate primary beam correction which caused source flux errors which vary as a function of radius to the nearest pointing center in the VLSS. This table was initially created by the HEASARC in December 2012, based on the FITS file CATALOG.FIT obtained from the NRAO website at <a href="http://www.cv.nrao.edu/vlss/CATALOG/">http://www.cv.nrao.edu/vlss/CATALOG/</a>. It was updated in July 2014 with the the table data from the latest file on the NRAO website (which was marked as last modified on 26 August 2013). Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/vlam311p4g
- Title:
- VLA M 31 1.4-GHz Source Catalog
- Short Name:
- VLAM311P4G
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the Data Release 2 of the Point Source Catalog created from a series of previously constructed radio-continuum images of M 31 at a wavelength lambda of 20 cm (frequency nu = 1.4 GHz) from archived VLA observations. In total, the authors identify a collection of 916 unique discrete radio sources across the field of M 31. Comparing these detected sources with those listed by Gelfand et al. (2004, ApJS, 155, 89, HEASARC table VLAM31325M) at lambda = 92 cm (325 MHz), the spectral index of 98 sources has been derived. The majority (73%) of these sources exhibit a spectral index of alpha < -0.6, indicating that their emission is predominantly non-thermal in nature, which is typical for background objects and Supernova Remnants (SNRs). This table contains the integrated flux densities for 1,131 detections of 916 unique sources detected at 1.4 GHz in 28 VLA observations. Of these 916 unique sources, 109 were detected in at least two separate images. For such sources, the authors list a group identifier, a group count, and an average flux and error. Sources were cross referenced with the Gelfand et al. (2004) catalog of sources detected at 92 cm. For matched sources, the flux density at this wavelength and the derived spectral index between 20 and 92 cm are listed. This table was created by the HEASARC in May 2015 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/Other/Ser/189.15">CDS Catalog J/Other/Ser/189.15</a> file m31radio.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/vla74mhzdp
- Title:
- VLA 74-MHz Deep High-Resolution Survey Source Catalog
- Short Name:
- VLA74MHZDP
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains some of the results from a 74-MHz survey of a 165 deg<sup>2</sup> region located near the North Galactic Pole (NGP). This survey has an unprecedented combination of both spatial resolution (25" FWHM) and sensitivity (1-sigma as low as 24mJy/beam). The authors detect 949 sources at the 5-sigma level in this region, enough to begin exploring the nature of the 74-MHz source population. In their paper, they present differential source counts, spectral index measurements, and the size distribution as determined from counterparts in the high-resolution FIRST 1.4-GHz survey. They find a trend of steeper spectral indices for the brighter sources. Further, there is a clear correlation between spectral index and median source size, with the flat-spectrum sources being much smaller on average. Ultra-steep spectrum objects (power-law index alpha <= -1.2, where S_nu ~ nu<sup>alpha</sup>) are identified. These sources are excellent candidates for high-redshift radio galaxies. The data used to produce this survey come from observations taken on 1998 March 7 intended to map two normal galaxies at 74 MHz (NGC 4565 and NGC 4631). These two pointings were separated by 6.4 degrees, roughly the radius of the primary beam at 74 MHz, allowing them to be ideally combined to produce a single deep image roughly 17 x 10 degrees in size. The combination of VLA A-configuration resolution (25 arcsec), favorable ionospheric conditions, and pointings in directions near the NGP, where the background temperature is low, produced the deepest observation ever obtained below 100 MHz. The same algorithm that was used in the 1.4-GHz NVSS was used to identify and characterize sources in this 74-MHz survey. The source detection algorithm had a threshold such that sources must have both a peak and integrated flux density level of at least 5 times the local rms noise level. Since the rms noise level varied from 24 mJy/beam to 80 mJy mJy/beam at the chosen field edge, the absolute level of the source-detection threshold of 5-sigma likewise varied over the image. This table was created by the HEASARC in August 2010 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJS/150/417/">CDS catalog J/ApJS/150/417/</a> file table2.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/vlam31325m
- Title:
- VLA M 31 325-MHz Source Catalog
- Short Name:
- VLAM31325M
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains some of the results from a 325-MHz radio survey of M 31, conducted with the A configuration of the Very Large Array. The survey covered an area of 7.6 square degrees, and a total of 405 radio sources between <~ 6" and 170" in extent were mapped with a resolution of 6" and a 1-sigma sensitivity of ~ 0.6mJy/beam. For each source, its morphological class, major axis theta<sub>M</sub>, minor axis theta<sub>m</sub>, position angle theta<sub>PA</sub>, peak flux I, integrated flux density S, spectral index alpha, and spectral curvature parameter {phi were calculated. A comparison of the flux and radial distribution - both in the plane of the sky and in the plane of M 31 - of these sources with those of the XMM-Newton Large-Scale Structure Survey and the Westerbork Northern Sky Survey revealed that a vast majority of sources detected are background radio galaxies. As a result of this analysis, the authors expect that only a few sources are intrinsic to M 31. This study is based on a 5 hr (4 hr on-source) observation of M 31 conducted on 2000 December 15 with the VLA in A configuration. The procedures used to generate the source list and the source properties (essentially making use of the MIRIAD task SFIND) are discussed in Sections 2.2.2 and 2.3 of the reference paper, respectively. This table was created by the HEASARC in September 2014 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJS/155/89">CDS Catalog J/ApJS/155/89</a> file table3.dat, the GLG (Gelfand, Lazio, Gaensler) source list. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/vlaonccat
- Title:
- VLA Orion Nebula Cluster Compact Source Catalog
- Short Name:
- VLAONCCAT
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains a deep centimeter-wavelength catalog of the Orion Nebula Cluster (ONC), based on a 30-hr single-pointing observation with the Karl G. Jansky Very Large Array (JVLA) in its high-resolution A configuration using two 1-GHz bands centered on 4.7 and 7.3 GHz. A total of 556 compact sources were detected in a map with a nominal rms noise of 3 µJy/beam, limited by complex source structure and the primary beam response. Compared to previous catalogs, these detections increase the sample of known compact radio sources in the ONC by more than a factor of seven. The new data show complex emission on a wide range of spatial scales. Following a preliminary correction for the wideband primary-beam response, the authors determine radio spectral indices for 170 sources whose index uncertainties are less than +/-0.5. They compare the radio to the X-ray and near-infrared point-source populations, noting similarities and differences. The observations were carried out with the JVLA of the National Radio Astronomy Observatory on 2012 September 30 and October 2-5 under the auspices of the project code SD630. Data were taken using the VLA's C-band (4-8 GHz) receivers in full polarization mode, with two 1-GHz basebands centered at 4.736 and 7.336 GHz to provide a good baseline for source spectral index determination. Apart from the first epoch, the field was simultaneously observed with the Chandra X-Ray Observatory. Mostly of interest for variability information, these data will be presented as part of a follow-up paper. This table was created by the HEASARC in September 2016 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJ/822/93">CDS Catalog J/ApJ/822/93</a> file table1.dat (the compact source catalog). Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/vlass821p4
- Title:
- VLA SDSS Stripe 82 Survey 1.4-GHz Source Catalog
- Short Name:
- VLASS821P4
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains results from a high-resolution radio survey of the Sloan Digital Sky Survey (SDSS) Southern Equatorial Stripe, also known as Stripe 82. This 1.4-GHz survey was conducted with the Very Large Array (VLA) primarily in the A configuration, with supplemental B configuration data to increase sensitivity to extended structure. The survey has an angular resolution of 1.8 arcseconds and achieves a median rms noise of 52 µJy/beam (µJy/beam) over 92 deg<sup>2</sup>. This is the deepest 1.4-GHz survey to achieve this large of an area, filling a gap in the phase space between small, deep and large, shallow surveys. It also serves as a pilot project for a larger high-resolution survey with the Expanded Very Large Array (EVLA). The authors discuss the technical design of the survey and details of the observations, and outline their method for data reduction, in the reference paper. They present a catalog of 17,969 isolated radio components, for an overall source density of ~195 sources deg<sup>-2</sup>. The astrometric accuracy of the data is excellent, with an internal check utilizing multiply observed sources yielding an rms scatter of 0.19 arcseconds in both Right Ascension and Declination. A comparison to the SDSS DR7 Quasar Catalog further confirms that the astrometry is well-tied to the optical reference frame, with mean offsets of 0.02" +/- 0.01" in Right Ascension, and 0.01" +/- 0.02" in Declination. A check of their photometry reveals a small, negative CLEAN-like bias on the level of 35 uJy. The authors report on the catalog completeness, finding that 97% of FIRST-detected quasars are recovered in the new Stripe 82 radio catalog, while faint, extended sources are more likely to be resolved out by the resolution bias. In their paper, they conclude with a discussion of the optical counterparts to the catalog sources, including 76 newly detected radio quasars. The full catalog as well as a search page and cutout server are available online at <a href="http://third.ucllnl.org/cgi-bin/stripe82cutout">http://third.ucllnl.org/cgi-bin/stripe82cutout</a>. The SDSS Stripe 82 observations were made with the National Radio Astronomy Observatory's (NRAO's) VLA. The data were collected over two VLA cycles, 2007-2008 and 2008-2009. The majority of the observations were taken in the A configuration, but the authors also obtained B-configuration coverage of the area in order to improve the sampling of the Fourier (U-V) plane and to increase sensitivity to the extended structure. Area 1 (delineated in black in Figure 1(a) of the paper) was covered in the A and B configurations in 2007-2008, and Area 2 (delineated in purple in Figure 1(a) of the paper) in the A and B configurations in 2008-2009. Area 1 is made up of 275 pointings, and Area 2 has 374, coming to 649 fields, and 92 deg<sup>2</sup> covered in total. This table was created by the HEASARC in August 2013 based on a complete machine-readable version of Table 1 from the reference paper which was kindly provided by the first author. This is a service provided by NASA HEASARC .