- ID:
- ivo://CDS.VizieR/J/A+A/579/A101
- Title:
- 3mm molecular line survey of 8 AGN
- Short Name:
- J/A+A/579/A101
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We aim for a better understanding of the imprints that the nuclear activity in galaxies leaves in the molecular gas. We used the IRAM 30m telescope to observe the frequency range ~[86-116]GHz towards the central regions of the star- burst galaxies M83, M82, and NGC253, the galaxies hosting an active galactic nucleus (AGN) M51, NGC1068, and NGC7469, and the ultra-luminous infrared galaxies (ULIRGs) Arp220 and Mrk231. Assuming local thermodynamic equilibrium (LTE), we calculated the column densities of 27 molecules and 10 isotopologues (or their upper limits in case of non-detections).
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/849/L36
- Title:
- mm-wave size study of ALMA submm galaxies
- Short Name:
- J/ApJ/849/L36
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the study of the far-infrared (IR) sizes of submillimeter galaxies (SMGs) in relation to their dust-obscured star formation rate (SFR) and active galactic nuclei (AGN) presence, determined using mid-IR photometry. We determined the millimeter-wave ({lambda}_obs_=1100um) sizes of 69 Atacama Large Millimeter/submillimeter Array (ALMA)-identified SMGs, selected with >=10{sigma} confidence on ALMA images (F_1100um_=1.7-7.4mJy). We found that all of the SMGs are located above an avoidance region in the size-flux plane, as expected by the Eddington limit for star formation. In order to understand what drives the different millimeter-wave sizes in SMGs, we investigated the relation between millimeter-wave size and AGN fraction for 25 of our SMGs at z=1-3. We found that the SMGs for which the mid-IR emission is dominated by star formation or AGN have extended millimeter-sizes, with respective median R_c,e_=1.6_-0.21_^+0.34^ and 1.5_-0.24_^+0.93^kpc. Instead, the SMGs for which the mid-IR emission corresponds to star-forming/AGN composites have more compact millimeter-wave sizes, with median R_c,e_=1.0_-0.20_^+0.20^kpc. The relation between millimeter-wave size and AGN fraction suggests that this size may be related to the evolutionary stage of the SMG. The very compact sizes for composite star-forming/AGN systems could be explained by supermassive black holes growing rapidly during the SMG coalescing, star-formation phase.
- ID:
- ivo://CDS.VizieR/J/ApJ/690/20
- Title:
- Models of the AGN and black hole populations
- Short Name:
- J/ApJ/690/20
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We construct evolutionary models of the populations of active galactic nuclei (AGNs) and supermassive black holes, in which the black hole mass function grows at the rate implied by the observed luminosity function, given assumptions about the radiative efficiency and the luminosity in Eddington units. We draw on a variety of recent X-ray and optical measurements to estimate the bolometric AGN luminosity function and compare to X-ray background data and the independent estimate of Hopkins et al. to assess remaining systematic uncertainties. The integrated AGN emissivity closely tracks the cosmic star-formation history, suggesting that star formation and black hole growth are closely linked at all redshifts.
- ID:
- ivo://CDS.VizieR/J/ApJS/171/376
- Title:
- MOJAVE. III. VLA 1.4GHz images
- Short Name:
- J/ApJS/171/376
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The MOJAVE blazar sample consists of the 133 brightest, most compact radio-loud AGNs in the northern sky, and it is selected on the basis of VLBA 2cm correlated flux density exceeding 1.5Jy (2Jy for declinations south of 0) at any epoch between 1994 and 2003. Since 1994 we have been gathering VLBA data on the sample to measure superluminal jet speeds and to better understand the parsec-scale kinematics of AGN jets. We have obtained 1.4GHz VLA A configuration data on 57 of these sources to investigate whether the extended luminosity of blazars is correlated with parsec-scale jet speed and also to determine what other parsec-scale properties are related to extended morphology, such as optical emission line strength and gamma-ray emission. We present images and measurements of the kiloparsec scale emission from the VLA data, which will be used in subsequent statistical studies of the MOJAVE sample.
- ID:
- ivo://CDS.VizieR/J/A+A/545/A113
- Title:
- MOJAVE IX. Core shift effects
- Short Name:
- J/A+A/545/A113
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have investigated a frequency-dependent shift in the absolute position of the optically thick apparent origin of parsec-scale jets ("core shift" effect) to probe physical conditions in ultra-compact relativistic outflows in active galactic nuclei. We used multi-frequency Very Long Baseline Array (VLBA) observations of 191 sources carried out in 12 epochs in 2006 within the Monitoring Of Jets in Active galactic nuclei with VLBA Experiments (MOJAVE) program. The observations were performed at 8.1, 8.4, 12.1, and 15.4GHz. We implemented a method of determining the core shift vector based on (i) image registration by two-dimensional normalized cross-correlation and (ii) model-fitting the source brightness distribution to take into account a non-zero core component offset from the phase center.
- ID:
- ivo://CDS.VizieR/J/ApJ/706/1253
- Title:
- MOJAVE VII. Blazar jet acceleration
- Short Name:
- J/ApJ/706/1253
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We discuss acceleration measurements for a large sample of extragalactic radio jets from the Monitoring Of Jets in Active Galactic Nuclei with VLBA Experiments (MOJAVE) program, which studies the parsec-scale jet structure and kinematics of a complete, flux-density-limited sample of active galactic nuclei (AGNs). Accelerations are measured from the apparent motion of individual jet features or "components" which may represent patterns in the jet flow. We find that significant accelerations are common both parallel and perpendicular to the observed component velocities.
- ID:
- ivo://CDS.VizieR/J/AJ/144/105
- Title:
- MOJAVE. VIII. Faraday rotation in AGN jets.
- Short Name:
- J/AJ/144/105
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal Faraday rotation is needed.
- ID:
- ivo://CDS.VizieR/J/AJ/138/1874
- Title:
- MOJAVE. VI. Kinematic analysis of blazar jets
- Short Name:
- J/AJ/138/1874
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We discuss the jet kinematics of a complete flux-density-limited sample of 135 radio-loud active galactic nuclei (AGNs) resulting from a 13 year program to investigate the structure and evolution of parsec-scale jet phenomena. Our analysis is based on new 2cm Very Long Baseline Array (VLBA) images obtained between 2002 and 2007, but includes our previously published observations made at the same wavelength, and is supplemented by VLBA archive data. In all, we have used 2424 images spanning the years 1994-2007 to study and determine the motions of 526 separate jet features in 127 jets.
- ID:
- ivo://CDS.VizieR/J/ApJ/798/134
- Title:
- MOJAVE. XII. Acceleration of blazar jets
- Short Name:
- J/ApJ/798/134
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the acceleration properties of 329 features in 95 blazar jets from the MOJAVE Very Long Baseline Array program. Nearly half the features and three-quarters of the jets show significant changes in speed and/or direction. In general, apparent speed changes are distinctly larger than changes in direction, indicating that changes in the Lorentz factors of jet features dominate the observed speed changes rather than bends along the line of sight. Observed accelerations tend to increase the speed of features near the jet base, <~10-20pc projected, and decrease their speed at longer distances. The range of apparent speeds at a fixed distance in an individual jet can span a factor of a few, indicating that shock properties and geometry may influence the apparent motions; however, we suggest that the broad trend of jet features increasing their speed near the origin is due to an overall acceleration of the jet flow out to deprojected distances of the order of 10^2^pc, beyond which the flow begins to decelerate or remains nearly constant in speed. We estimate intrinsic rates of change of the Lorentz factors in the galaxy frame of the order of {sdot}{Gamma}/{Gamma}~=10^-3^ to 10^-2^/yr, which can lead to total Lorentz factor changes of a factor of a few on the length scales observed here. Finally, we also find evidence for jet collimation at projected distances of <~10pc in the form of the non-radial motion and bending accelerations that tend to better align features with the inner jet.
- ID:
- ivo://CDS.VizieR/J/AJ/152/12
- Title:
- MOJAVE. XIII. New 15GHz observations on 1994-2013
- Short Name:
- J/AJ/152/12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 1625 new 15GHz (2cm) VLBA images of 295 jets associated with active galactic nuclei (AGNs) from the MOJAVE and 2cm VLBA surveys, spanning observations between 1994 August 31 and 2013 August 20. For 274 AGNs with at least 5 VLBA epochs, we have analyzed the kinematics of 961 individual bright features in their parsec-scale jets. A total of 122 of these jets have not been previously analyzed by the MOJAVE program. In the case of 451 jet features that had at least 10 epochs, we also examined their kinematics for possible accelerations. At least half of the well-sampled features have non-radial and/or accelerating trajectories, indicating that non-ballistic motion is common in AGN jets. Since it is impossible to extrapolate any accelerations that occurred before our monitoring period, we could only determine reliable ejection dates for ~24% of those features that had significant proper motions. The distribution of maximum apparent jet speeds in all 295 AGNs measured by our program to date is peaked below 5c , with very few jets with apparent speeds above 30c . The fastest speed in our survey is ~50c , measured in the jet of the quasar PKS0805-07, and is indicative of a maximum jet Lorentz factor of ~50 in the parent population. An envelope in the maximum jet speed versus redshift distribution of our sample provides additional evidence of this upper limit to the speeds of radio-emitting regions in parsec-scale AGN jets. The Fermi-LAT-detected gamma-ray AGNs in our sample have, on average, higher jet speeds than non-LAT-detected AGNs, indicating a strong correlation between parsec-scale jet speed and the gamma-ray Doppler boosting factor. We have identified 11 moderate-redshift (z<0.35) AGNs with fast apparent speeds (>10c) that are strong candidates for future TeV gamma-ray detection. Of the five gamma-ray loud narrow-lined Seyfert I AGNs in our sample, three show highly superluminal jet motions, while the others have sub-luminal speeds. This indicates that some narrow-lined Seyfert I AGNs possess powerful jets with Lorentz factors in excess of 10, and viewing angles less than 10{deg}, consistent with those of typical BL Lac objects and flat-spectrum radio quasars.