- ID:
- ivo://CDS.VizieR/J/ApJS/240/26
- Title:
- YSO candidates in Canis Major OB1 association
- Short Name:
- J/ApJS/240/26
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study a very young star-forming region in the outer Galaxy that is the most concentrated source of outflows in the Spitzer Space Telescope GLIMPSE360 survey. This region, dubbed CMa-l224, is located in the Canis Major OB1 association. CMa-l224 is relatively faint in the mid-infrared, but it shines brightly at the far-infrared wavelengths as revealed by the Herschel Space Observatory data from the Hi-GAL survey. Using the 3.6 and 4.5{mu}m data from the Spitzer/GLIMPSE360 survey, combined with the JHKs Two Micron All Sky Survey (2MASS) and the 70-500{mu}m Herschel/Hi-GAL data, we develop young stellar object (YSO) selection criteria based on color-color cuts and fitting of the YSO candidates' spectral energy distributions with YSO 2D radiative transfer models. We identify 293 YSO candidates and estimate physical parameters for 210 sources well fit with YSO models. We select an additional 47 sources with GLIMPSE360-only photometry as "possible YSO candidates." The vast majority of these sources are associated with high H2 column density regions and are good targets for follow-up studies. The distribution of YSO candidates at different evolutionary stages with respect to Herschel filaments supports the idea that stars are formed in the filaments and become more dispersed with time. Both the supernova-induced and spontaneous star formation scenarios are plausible in the environmental context of CMa-l224. However, our results indicate that a spontaneous gravitational collapse of filaments is a more likely scenario. The methods developed for CMa-l224 can be used for larger regions in the Galactic plane where the same set of photometry is available.
« Previous |
431 - 435 of 435
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/BaltA/19/1
- Title:
- YSOs in Camelopardalis
- Short Name:
- J/BaltA/19/1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using photometric data of infrared surveys, young stellar object (YSO) status is verified for 141 objects selected in our previous papers in the Cassiopeia and Camelopardalis segment of the Milky Way bounded by Galactic Using photometric data of infrared surveys, young stellar object (YSO) status is verified for 141 objects selected in our previous papers in the Cassiopeia and Camelopardalis segment of the Milky Way bounded by Galactic (l, b) = 132-158{deg}, +/-12{deg}). The area includes the known starforming regions in the emission nebulae W3, W4 and W5 and the massive YSOAFGL 490. Spectral energy distribution (SED) curves between 700 nm and 160um, constructed from the GSC 2, 2MASS, IRAS, MSX, Spitzer and AKARI data, are used to estimate the evolutionary stages of these stars.
- ID:
- ivo://CDS.VizieR/J/A+A/542/A66
- Title:
- YSOs in 9 LMC star forming regions
- Short Name:
- J/A+A/542/A66
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We introduce a new set of selection criteria for the identification of infrared bright young stellar object (YSO) candidates and apply them to nine HII regions in the Large Magellanic Cloud (LMC), focusing particularly on lower mass candidates missed by most surveys. Data are from the Spitzer Space Telescope legacy program SAGE (Surveying the Agents of Galaxy Evolution; Meixner et al. 2006, Cat. J/AJ/132/2268, see also II/305), combined with optical photometry from the Magellanic Clouds Photometric Survey (MCPS; Zaritsky et al. 1997AJ....114.1002Z) and near-infrared photometry from the InfraRed Survey Facility (IRSF; Kato et al. 2007, Cat. II/288). We choose regions of diverse physical size, star formation rates (SFRs), and ages. We also cover a wide range of locations and surrounding environments in the LMC. These active star-forming regions are LHA 120-N 11, N 44, N 51, N 105, N 113, N 120, N 144, N 160, and N 206. Some have been well-studied (e.g., N11, N44, N160) in the past, while others (e.g., N51, N144) have received little attention. We identify 1045 YSO candidates, including 918 never before identified and 127 matching previous candidate lists. We characterize the evolutionary stage and physical properties of each candidate using the spectral energy distribution (SED) fitter of Robitaille et al. (2007ApJS..169..328R) and estimate mass functions and SFRs for each region.
- ID:
- ivo://CDS.VizieR/J/ApJ/714/778
- Title:
- YSOs in the Serpens Molecular Cloud
- Short Name:
- J/ApJ/714/778
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Spitzer InfraRed Spectrograph (IRS) mid-infrared (5-35um) spectra of a complete flux-limited sample (>=3mJy at 8um) of young stellar object (YSO) candidates selected on the basis of their infrared colors in the Serpens Molecular Cloud. Spectra of 147 sources are presented and classified. Background stars (with slope consistent with a reddened stellar spectrum and silicate features in absorption), galaxies (with redshifted polycyclic aromatic hydrocarbon (PAH) features), and a planetary nebula (with high ionization lines) amount to 22% of contamination in this sample, leaving 115 true YSOs. Sources with rising spectra and ice absorption features, classified as embedded Stage I protostars, amount to 18% of the sample. The remaining 82% (94) of the disk sources are analyzed in terms of spectral energy distribution shapes, PAHs, and silicate features. The presence, strength, and shape of these silicate features are used to infer disk properties for these systems. About 8% of the disks have 30/13um flux ratios consistent with cold disks with inner holes or gaps, and 3% of the disks show PAH emission.
- ID:
- ivo://CDS.VizieR/J/A+AS/137/293
- Title:
- ZOAG galaxies in 115{deg}<l<157{deg}
- Short Name:
- J/A+AS/137/293
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A systematic search by microscope for non-stellar objects on 19 POSS II R film copies has led to the detection of 3455 objects. The vast majority are obscured galaxies, most of which are new. We present coordinates and optical diameters of these galaxy candidates, list coincidences with objects in optical and infrared catalogues.