- ID:
- ivo://CDS.VizieR/J/ApJ/761/97
- Title:
- Star Formation in Radio Survey (SFRS): 33GHz obs.
- Short Name:
- J/ApJ/761/97
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 33GHz photometry of 103 galaxy nuclei and extranuclear star-forming complexes taken with the Green Bank Telescope (GBT) as part of the Star Formation in Radio Survey (SFRS). Among the sources without evidence for an active galactic nucleus, and also having lower frequency radio data, we find a median thermal fraction at 33GHz of {approx}76% with a dispersion of {approx}24%. For all sources resolved on scales <~0.5kpc, the thermal fraction is even larger, being >~90%. This suggests that the rest-frame 33GHz emission provides a sensitive measure of the ionizing photon rate from young star-forming regions, thus making it a robust star formation rate (SFR) indicator. Taking the 33 GHz SFRs as a reference, we investigate other empirical calibrations relying on different combinations of warm 24{mu}m dust, total infrared (IR; 8-1000{mu}m), H{alpha} line, and far-UV continuum emission. The recipes derived here generally agree with others found in the literature, albeit with a large dispersion that most likely stems from a combination of effects. Comparing the 33GHz to total IR flux ratios as a function of the radio spectral index, measured between 1.7 and 33GHz, we find that the ratio increases as the radio spectral index flattens which does not appear to be a distance effect. Consequently, the ratio of non-thermal to total IR emission appears relatively constant, suggesting only moderate variations in the cosmic-ray electron injection spectrum and ratio of synchrotron to total cooling processes among star-forming complexes. Assuming that this trend solely arises from an increase in the thermal fraction sets a maximum on the scatter of the non-thermal spectral indices among the star-forming regions of {sigma}_{alpha}_NT<~0.13.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/559/606
- Title:
- Star formation in spectroscopic survey
- Short Name:
- J/ApJ/559/606
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The 15R-North galaxy redshift survey is a uniform spectroscopic survey (S/N~10) covering the range 3650-7400{AA} for 3149 galaxies with median redshift 0.05. The sample is 90% complete to R=15.4. The median slit covering fraction is 24% of the galaxy, apparently sufficient to minimize the effects of aperture bias on the EW(H{alpha}). Forty-nine percent of the galaxies in the survey have one or more emission lines detected at >=2{sigma}. In agreement with previous surveys, the fraction of absorption-line galaxies increases steeply with galaxy luminosity. We use H{beta}, [O III], H{alpha}, and [N II] to discriminate between star-forming galaxies and AGNs. At least 20% of the galaxies are star-forming, at least 17% have AGN-like emission, and 12% have unclassifiable emission. The data for the entire survey will appear in Geller et al. 2002, in preparation.
- ID:
- ivo://CDS.VizieR/J/A+A/634/A95
- Title:
- Star formation in the blue compact dwarf Mrk 900
- Short Name:
- J/A+A/634/A95
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Low-luminosity, active star-forming blue compact galaxies (BCGs) are excellent laboratories for investigating the process of star formation on galactic scales and probing the interplay between massive stars and the surrounding interstellar (or intergalactic) medium. We investigated the morphology, structure, and stellar content of the Blue Compact Galaxy Mrk 900, combining optical integral field observations obtained with VIMOS at the VLT and deep broad-band photometry taken at the 2.5 m NOT telescope. From the integral field data, we built continuum, emission, and diagnostic line ratio maps and produced velocity and velocity dispersion maps. We also generated the integrated spectrum of the major HII regions and the nuclear area to determine reliable physical parameters and oxygen abundances. The broad-band data, tracing the galaxy up to radius 4 kpc, allowed us to investigate the properties of the low surface brightness underlying stellar host. We disentangle two different stellar components in Mrk 900: a young population, which resolves into individual stellar clusters with ages ~5.5-6.6Myr and extends about 1 kpc along the galaxy minor axis, is placed on top of a rather red and regular shaped underlying stellar host, several Gyr old. We find evidence of a substantial amount of dust and an inhomogeneous extinction pattern, with a dust lane crossing the central starburst. Mrk 900 displays overall rotation, although distorted in the central, starburst regions; the dispersion velocity map is highly inhomogeneous, with values increasing up to 60km/s at the periphery of the SF regions, where we also find hints of the presence of shocks. Our observational results point to an interaction or merger with a low-mass object or infalling gas as plausible trigger mechanisms for the present starburst event.
- ID:
- ivo://CDS.VizieR/J/A+A/599/A95
- Title:
- Star formation in z~1.5 quiescent galaxies
- Short Name:
- J/A+A/599/A95
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a sample of 34 spectroscopically confirmed BzK-selected ~10^11^M_{sun}_ quiescent galaxies (pBzK) in the COSMOS field. The targets were initially observed with VIMOS on the VLT to facilitate the calibration of the photometric redshifts of massive galaxies at z>~1.5. Here we describe the reduction and analysis of the data, and the spectrophotometric properties of these pBzK galaxies. In particular, using a spatially resolved median 2D spectrum, we find that the fraction of stellar populations with ages <1Gyr is at least 3 times higher in the outer regions of the pBzK galaxies than in their cores. This results in a mild age gradient of {DELTA}age<=0.4Gyr over ~6kpc and suggests either the occurrence of widespread rejuvenation episodes or that inside-out quenching played a role in the passivization of this galaxy population. We also report on low-level star formation rates derived from the [OII]3727{AA} emission line, with SFR_OII_~3.7-4.5M_{sun}_/yr. This estimate is confirmed by an independent measurement on a separate sample of similarly-selected quiescent galaxies in the COSMOS field, using stacked far-infrared data (SFR_FIR_~2-4M_{sun}_/yr). This second, photometric sample also displays significant excess at 1.4GHz, suggestive of the presence of radio-mode AGN activity.
- ID:
- ivo://CDS.VizieR/J/AJ/155/234
- Title:
- Star formation rate distribution in NGC 1232
- Short Name:
- J/AJ/155/234
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- NGC 1232 is a face-on spiral galaxy and a great laboratory for the study of star formation due to its proximity. We obtained high spatial resolution H{alpha} images of this galaxy, with adaptive optics, using the SAM instrument at the SOAR telescope, and used these images to study its H II regions. These observations allowed us to produce the most complete H II region catalog for it to date, with a total of 976 sources. This doubles the number of H II regions previously found for this object. We used these data to construct the H II luminosity function, and obtained a power-law index lower than the typical values found for Sc galaxies. This shallower slope is related to the presence of a significant number of high-luminosity H II regions (log L>39 dex). We also constructed the size distribution function, verifying that, as for most galaxies, NGC 1232 follows an exponential law. We also used the H{alpha} luminosity to calculate the star formation rate. An extremely interesting fact about this galaxy is that X-ray diffuse observations suggest that NGC 1232 recently suffered a collision with a dwarf galaxy. We found an absence of star formation around the region where the X-ray emission is more intense, which we interpret as a star formation quenching due to the collision. Along with that, we found an excess of star-forming regions in the northeast part of the galaxy, where the X-ray emission is less intense.
- ID:
- ivo://CDS.VizieR/J/AJ/146/46
- Title:
- Star Formation Rate in nearby galaxies
- Short Name:
- J/AJ/146/46
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A distance-limited sample of 869 objects from the Updated Nearby Galaxy Catalog is used to characterize the star formation status of the Local Volume population. We present a compiled list of 1217 star formation rate (SFR) estimates for 802 galaxies within 11Mpc, derived from the H{alpha} imaging surveys and the GALEX far-ultraviolet survey. We briefly discuss some basic scaling relations between SFR and luminosity, morphology, HI mass, surface brightness, and the environment of the galaxies. About 3/4 of our sample consist of dwarf galaxies, for which we offer a more refined classification. We note that the specific SFR of nearly all luminous and dwarf galaxies does not exceed the maximum value: log(SFR/L_K_)=-9.4[yr^-1^]. Most spiral and blue dwarf galaxies have enough time to generate their stellar mass during the cosmological time, T_0_, with the observed SFRs. They dispose of a sufficient amount of gas to support their present SFRs over the next T_0_term. We note that only a small fraction of BCD, Im, and Ir galaxies (about 1/20) proceed in a mode of vigorous starburst activity. In general, the star formation history of spiral and blue dwarf galaxies is mainly driven by their internal processes. The present SFRs of E, S0, and dSph galaxies typically have 1/30-1/300 of their former activity.
- ID:
- ivo://CDS.VizieR/J/AJ/127/2002
- Title:
- Star Formation Rate of NFGS galaxies
- Short Name:
- J/AJ/127/2002
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the [O II] emission line as a star formation rate (SFR) indicator using integrated spectra of 97 galaxies from the Nearby Field Galaxies Survey (NFGS). The sample includes all Hubble types and contains SFRs ranging from 0.01 to 100M_{sun}_/yr.
- ID:
- ivo://CDS.VizieR/J/ApJ/814/95
- Title:
- Star formation rate of 4<~z<~8 galaxies
- Short Name:
- J/ApJ/814/95
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Recent observations have shown that the characteristic luminosity of the rest-frame ultraviolet (UV) luminosity function does not significantly evolve at 4<z<7 and is approximately M_UV_^*^~21. We investigate this apparent non-evolution by examining a sample of 173 bright, M_UV_<-21 galaxies at z=4-7, analyzing their stellar populations and host halo masses. Including deep Spitzer/IRAC imaging to constrain the rest-frame optical light, we find that M_UV_^*^ galaxies at z=4-7 have similar stellar masses of log(M/M_{sun}_)=9.6-9.9 and are thus relatively massive for these high redshifts. However, bright galaxies at z=4-7 are less massive and have younger inferred ages than similarly bright galaxies at z=2-3, even though the two populations have similar star formation rates and levels of dust attenuation for a fixed dust-attenuation curve. Matching the abundances of these bright z=4-7 galaxies to halo mass functions from the Bolshoi {Lambda}CDM simulation implies that the typical halo masses in ~M_UV_^*^ galaxies decrease from log(M_h_/M_{sun}_)=11.9 at z=4 to log(M_h_/M_{sun}_)=11.4 at z=7. Thus, although we are studying galaxies at a similar stellar mass across multiple redshifts, these galaxies live in lower mass halos at higher redshift. The stellar baryon fraction in ~M_UV_^*^ galaxies in units of the cosmic mean {Omega}_b_/{Omega}_m_ rises from 5.1% at z=4 to 11.7% at z=7; this evolution is significant at the ~3{sigma} level. This rise does not agree with simple expectations of how galaxies grow, and implies that some effect, perhaps a diminishing efficiency of feedback, is allowing a higher fraction of available baryons to be converted into stars at high redshifts.
- ID:
- ivo://CDS.VizieR/J/A+A/425/417
- Title:
- Star formation rates of blue compact galaxies
- Short Name:
- J/A+A/425/417
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using Halpha, [OII]3727, infrared (IR), radio (1.4GHz) luminosities and neutral hydrogen (HI) gas masses, we estimated star formation rates and gas depletion timescales of 72 star-forming blue compact galaxies (BCGs) To assess the possible systematic differences among different star formation rate indicators, we compared the star formation rates derived from Halpha, [OII]3727, IR, and radio luminosities, and investigated the effects from underlying stellar absorption and dust extinction. We found that subtracting underlying stellar absorption is very important to calculate both dust extinction and star formation rate of galaxies. Otherwise, the intrinsic extinction will be overestimated, the star formation rates derived from [OII]3727 and Halpha will be underestimated (if the underlying stellar absorption and the internal extinction were not corrected from the observed luminosity) or overestimated (if an overestimated internal extinction were used for extinction correction). After both the underlying stellar absorption and the dust extinction were corrected, a remarkably good correlation emerges among Halpha, [OII]3727, IR and radio star formation rate indicators.
- ID:
- ivo://CDS.VizieR/J/PASP/123/1011
- Title:
- Star Formation Reference Survey (SFRS)
- Short Name:
- J/PASP/123/1011
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Star formation is arguably the most important physical process in the cosmos. It is a fundamental driver of galaxy evolution and the ultimate source of most of the energy emitted by galaxies. A correct interpretation of star formation rate (SFR) measures is therefore essential to our understanding of galaxy formation and evolution. Unfortunately, however, no single SFR estimator is universally available or even applicable in all circumstances: the numerous galaxies found in deep surveys are often too faint (or too distant) to yield significant detections with most standard SFR measures, and until now there have been no global, multi-band observations of nearby galaxies that span all the conditions under which star-formation is taking place. To address this need in a systematic way, we have undertaken a multi-band survey of all types of star-forming galaxies in the local Universe. This project, the Star Formation Reference Survey (SFRS), is based on a statistically valid sample of 369 nearby galaxies that span all existing combinations of dust temperature, SFR, and specific SFR. Furthermore, because the SFRS is blind with respect to AGN fraction and environment it serves as a means to assess the influence of these factors on SFR. Our panchromatic global flux measurements (including GALEX FUV+NUV, SDSS ugriz, 2MASS JHKs, Spitzer 3-8um, and others) furnish uniform SFR measures and the context in which their reliability can be assessed. This paper describes the SFRS survey strategy, defines the sample, and presents the multi-band photometry collected to date.