- ID:
- ivo://CDS.VizieR/J/A+A/465/815
- Title:
- Abundances of Sgr dSph stars
- Short Name:
- J/A+A/465/815
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Sagittarius dwarf spheroidal galaxy is the nearest neighbor of the Milky Way. Moving along a short period quasi-polar orbit within the Halo, it is being destroyed by the tidal interaction with our Galaxy, losing its stellar content along a huge stellar stream. We study the detailed chemical composition of 12 giant stars in the Sagittarius dwarf Spheroidal main body, together with 5 more in the associated globular cluster Terzan 7, by means of high resolution VLT-UVES spectra. Abundances are derived for up to 21 elements from O to Nd, by fitting lines EW or line profiles against ATLAS 9 model atmospheres and SYNTHE spectral syntheses calculated ad-hoc. Temperatures are derived from (V-I)_0_ or (B-V)_0_ colors and gravities from FeI-FeII ionization equilibrium. The metallicity of the observed stars is between [Fe/H]=-0.9 and 0. We detected a highly peculiar "chemical signature", with undersolar alpha elements, Na, Al , Sc, V, Co, Ni, Cu, and Zn, among others, and overabundant La, Ce, and Nd. Many of these abundance ratios (in particular light-odd elements and iron peak ones) are strongly at odds with what is observed within the Milky Way, so they may be a very useful tool for recognizing populations originating within the Sagittarius dwarf. This can be clearly seen in the case of the globular Palomar 12, which is believed to have been stripped from Sagittarius: the cluster shows precisely the same chemical "oddities", thus finally confirming its extragalactic origin.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/742/37
- Title:
- Abundances of six RGB stars in M22
- Short Name:
- J/ApJ/742/37
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an empirical s-process abundance distribution derived with explicit knowledge of the r-process component in the low-metallicity globular cluster M22. We have obtained high-resolution, high signal-to-noise spectra for six red giants in M22 using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory. In each star we derive abundances for 44 species of 40 elements, including 24 elements heavier than zinc (Z=30) produced by neutron-capture reactions. Previous studies determined that three of these stars (the "r+s group") have an enhancement of s-process material relative to the other three stars (the "r-only group"). We confirm that the r+s group is moderately enriched in Pb relative to the r-only group. Both groups of stars were born with the same amount of r-process material, but s-process material was also present in the gas from which the r+s group formed. The s-process abundances are inconsistent with predictions for asymptotic giant branch (AGB) stars with M<=3M_{sun}_ and suggest an origin in more massive AGB stars capable of activating the ^22^Ne({alpha},n)^25^Mg reaction. We calculate the s-process "residual" by subtracting the r-process pattern in the r-only group from the abundances in the r+s group. In contrast to previous r- and s-process decompositions, this approach makes no assumptions about the r- and s-process distributions in the solar system and provides a unique opportunity to explore s-process yields in a metal-poor environment.
- ID:
- ivo://CDS.VizieR/J/AJ/129/303
- Title:
- Abundances of stars in M3 and M13
- Short Name:
- J/AJ/129/303
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have carried out a detailed abundance analysis for 21 elements in a sample of 27 stars with a wide range in luminosity from luminous giants to stars near the main-sequence turnoff in the globular cluster M13 ([Fe/H]=-1.50dex) and in a sample of 13 stars distributed from the tip to the base of the red giant branch (RGB) in the globular cluster M3 ([Fe/H]=-1.39dex). The analyzed spectra, obtained with HIRES at the Keck Observatory, are of high dispersion (R={lambda}/{Delta}{lambda}=35000).
- ID:
- ivo://CDS.VizieR/J/AJ/135/1551
- Title:
- Abundances of stars in 47 Tuc
- Short Name:
- J/AJ/135/1551
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present chemical abundances for O, Na, Mg, Al, Si, Ca, Ti, and Fe in eight red giants and one turnoff star in the metal-rich globular cluster 47 Tuc, based on spectroscopy with the Magellan Inamori Kyocera Echelle high-resolution spectrograph on the Magellan 6.5m Clay telescope. A robust line by a line differential abundance analysis technique, relative to the K-giant Arcturus, was used to reduce systematic errors from atmospheric and atomic parameters.
- ID:
- ivo://CDS.VizieR/J/A+A/565/A121
- Title:
- Abundances of 47 Tuc turn-off stars
- Short Name:
- J/A+A/565/A121
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The cluster 47 Tuc is among the most metal-rich Galactic globular clusters and its metallicity is similar to that of metal-poor disc stars and open clusters. Like other globular clusters, it displays variations in the abundances of elements lighter than Si, which is generally interpreted as evidence of the presence of multiple stellar populations. We aim to determine abundances of Li, O, and Na in a sample of of 110 turn-off (TO) stars, in order to study the evolution of light elements in this cluster and to put our results in perspective with observations of other globular and open clusters, as well as with field stars. We use medium resolution spectra obtained with the GIRAFFE spectrograph at the ESO 8.2m Kueyen VLT telescope and use state of the art 1D model atmospheres and NLTE line transfer to determine the abundances. We also employ CO^5^BOLD hydrodynamical simulations to assess the impact of stellar granulation on the line formation and inferred abundances.
- ID:
- ivo://CDS.VizieR/J/A+A/423/353
- Title:
- Abundances of UV-bright stars
- Short Name:
- J/A+A/423/353
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have derived the chemical composition of nine UV-bright stars belonging to five Galactic globular clusters of various metallicities ([Fe/H] from -1.0 to -2.4dex). The analyses are based on high resolution spectra obtained with the UV-Visual Echelle Spectrograph (UVES) at VLT-UT2.
- ID:
- ivo://CDS.VizieR/J/ApJ/667/911
- Title:
- Abundances on the main sequence of {omega} Cen
- Short Name:
- J/ApJ/667/911
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Abundance ratios of carbon, nitrogen, and strontium relative to iron, calculated using spectrum synthesis techniques, are given for a sample of main-sequence and turnoff stars that belong to the globular cluster omega Centauri. The variations of carbon, nitrogen, and/or strontium show several different abundance patterns as a function of [Fe/H]. The source of the enhancements/depletions in carbon, nitrogen, and/or strontium may be enrichment from asymptotic giant branch stars of low (1-3M_{sun}_ and intermediate (3-8M_{sun}_ mass. Massive rotating stars that produce excess nitrogen without carbon and oxygen overabundances may also play a role. These abundances enable different contributors to be considered and incorporated into the evolutionary picture of omega Cen.
- ID:
- ivo://CDS.VizieR/J/ApJ/836/168
- Title:
- Abundances & RVs for stars near (or in) NGC6273
- Short Name:
- J/ApJ/836/168
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Recent observations have shown that a growing number of the most massive Galactic globular clusters contain multiple populations of stars with different [Fe/H] and neutron-capture element abundances. NGC 6273 has only recently been recognized as a member of this "iron-complex" cluster class, and we provide here a chemical and kinematic analysis of >300 red giant branch and asymptotic giant branch member stars using high-resolution spectra obtained with the Magellan-M2FS and VLT-FLAMES instruments. Multiple lines of evidence indicate that NGC 6273 possesses an intrinsic metallicity spread that ranges from about [Fe/H]=-2 to -1 dex, and may include at least three populations with different [Fe/H] values. The three populations identified here contain separate first (Na/Al-poor) and second (Na/Al-rich) generation stars, but a Mg-Al anti-correlation may only be present in stars with [Fe/H]>~-1.65. The strong correlation between [La/Eu] and [Fe/H] suggests that the s-process must have dominated the heavy element enrichment at higher metallicities. A small group of stars with low [{alpha}/Fe] is identified and may have been accreted from a former surrounding field star population. The cluster's large abundance variations are coupled with a complex, extended, and multimodal blue horizontal branch (HB). The HB morphology and chemical abundances suggest that NGC 6273 may have an origin that is similar to {omega} Cen and M54.
- ID:
- ivo://CDS.VizieR/J/AJ/154/155
- Title:
- Abundance variations in the outer halo GC NGC 6229
- Short Name:
- J/AJ/154/155
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- NGC 6229 is a relatively massive outer halo globular cluster that is primarily known for exhibiting a peculiar bimodal horizontal branch morphology. Given the paucity of spectroscopic data on this cluster, we present a detailed chemical composition analysis of 11 red giant branch members based on high resolution (R~38000), high S/N (>100) spectra obtained with the MMT-Hectochelle instrument. We find the cluster to have a mean heliocentric radial velocity of -138.1_-1.0_^+1.0^ km/s, a small dispersion of 3.8_-0.7_^+1.0^ km/s, and a relatively low (M/L_V_)_{sun}_=0.82_-0.28_^+0.49^. The cluster is moderately metal-poor with <[Fe/H]>=-1.13 dex and a modest dispersion of 0.06 dex. However, 18% (2/11) of the stars in our sample have strongly enhanced [La,Nd/Fe] ratios that are correlated with a small (~0.05 dex) increase in [Fe/H]. NGC 6229 shares several chemical signatures with M75, NGC 1851, and the intermediate metallicity populations of {omega} Cen, which lead us to conclude that NGC 6229 is a lower mass iron-complex cluster. The light elements exhibit the classical (anti-)correlations that extend up to Si, but the cluster possesses a large gap in the O-Na plane that separates first and second generation stars. NGC 6229 also has unusually low [Na,Al/Fe] abundances that are consistent with an accretion origin. A comparison with M54 and other Sagittarius clusters suggests that NGC 6229 could also be the remnant core of a former dwarf spheroidal galaxy.
- ID:
- ivo://CDS.VizieR/J/ApJ/772/82
- Title:
- A catalog of globular cluster systems
- Short Name:
- J/ApJ/772/82
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalog of 422 galaxies with published measurements of their globular cluster (GC) populations. Of these, 248 are E galaxies, 93 are S0 galaxies, and 81 are spirals or irregulars. Among various correlations of the total number of GCs with other global galaxy properties, we find that N_GC_ correlates well though nonlinearly with the dynamical mass of the galaxy bulge M_dyn_=4{sigma}_e_^2^R_e_/G, where {sigma}_e_ is the central velocity dispersion and R_e_ the effective radius of the galaxy light profile. We also present updated versions of the GC specific frequency S_N_ and specific mass S_M_ versus host galaxy luminosity and baryonic mass. These graphs exhibit the previously known U-shape: highest S_N_ or S_M_ values occur for either dwarfs or supergiants, but in the midrange of galaxy size (10^9^-10^10^L_{sun}_) the GC numbers fall along a well-defined baseline value of S_N_=~1 or S_M_=0.1, similar among all galaxy types. Along with other recent discussions, we suggest that this trend may represent the effects of feedback, which systematically inhibited early star formation at either very low or very high galaxy mass, but which had its minimum effect for intermediate masses. Our results strongly reinforce recent proposals that GC formation efficiency appears to be most nearly proportional to the galaxy halo mass M_halo_. The mean "absolute" efficiency ratio for GC formation that we derive from the catalog data is M_GCS_/M_halo_=6x10^-5^. We suggest that the galaxy-to-galaxy scatter around this mean value may arise in part because of differences in the relative timing of GC formation versus field-star formation. Finally, we find that an excellent empirical predictor of total GC population for galaxies of all luminosities is N_GC_~(R_e_{sigma}_e_)^1.3^, a result consistent with fundamental plane scaling relations.