- ID:
- ivo://CDS.VizieR/J/AJ/152/208
- Title:
- Ages and metallicities for M31 star clusters
- Short Name:
- J/AJ/152/208
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Application of fitting techniques to obtain physical parameters-such as ages, metallicities, and {alpha}-element to iron ratios-of stellar populations is an important approach to understanding the nature of both galaxies and globular clusters (GCs). In fact, fitting methods based on different underlying models may yield different results and with varying precision. In this paper, we have selected 22 confirmed M31 GCs for which we do not have access to previously known spectroscopic metallicities. Most are located at approximately one degree (in projection) from the galactic center. We performed spectroscopic observations with the 6.5m MMT telescope, equipped with its Red Channel Spectrograph. Lick/IDS absorption-line indices, radial velocities, ages, and metallicities were derived based on the EZ_Ages stellar population parameter calculator. We also applied full spectral fitting with the ULySS code to constrain the parameters of our sample star clusters. In addition, we performed {chi}_min_^2^ fitting of the clusters' Lick/IDS indices with different models, including the Bruzual & Charlot models (adopting Chabrier or Salpeter stellar initial mass functions and 1994 or 2000 Padova stellar evolutionary tracks), the galev, and the Thomas et al. models. For comparison, we collected their UVBRIJK photometry from the Revised Bologna Catalogue (v.5) to obtain and fit the GCs' spectral energy distributions (SEDs). Finally, we performed fits using a combination of Lick/IDS indices and SEDs. The latter results are more reliable and the associated error bars become significantly smaller than those resulting from either our Lick/IDS indices-only or our SED-only fits.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/750/91
- Title:
- Ages and metallicities of old stellar systems
- Short Name:
- J/ApJ/750/91
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a statistical analysis of the properties of a large sample of dynamically hot old stellar systems, from globular clusters (GCs) to giant ellipticals, which was performed in order to investigate the origin of ultracompact dwarf galaxies (UCDs). The data were mostly drawn from Forbes et al. (2008, Cat. J/MNRAS/389/1924). We recalculated some of the effective radii, computed mean surface brightnesses and mass-to-light ratios, and estimated ages and metallicities. We completed the sample with GCs of M31. We used a multivariate statistical technique (K-Means clustering), together with a new algorithm (Gap Statistics) for finding the optimum number of homogeneous sub-groups in the sample, using a total of six parameters (absolute magnitude, effective radius, virial mass-to-light ratio, stellar mass-to-light ratio, and metallicity). We found six groups. FK1 and FK5 are composed of high- and low-mass elliptical galaxies, respectively. FK3 and FK6 are composed of high-metallicity and low-metallicity objects, respectively, and both include GCs and UCDs. Two very small groups, FK2 and FK4, are composed of Local Group dwarf spheroidals. Our groups differ in their mean masses and virial mass-to-light ratios. The relations between these two parameters are also different for the various groups. The probability density distributions of metallicity for the four groups of galaxies are similar to those of the GCs and UCDs. The brightest low-metallicity GCs and UCDs tend to follow the mass-metallicity relation like elliptical galaxies. The objects of FK3 are more metal-rich per unit effective luminosity density than high-mass ellipticals.
- ID:
- ivo://CDS.VizieR/J/AJ/117/247
- Title:
- Ages for globular clusters in the halo
- Short Name:
- J/AJ/117/247
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have used the Wide Field Planetary Camera 2 on the Hubble Space Telescope to obtain photometry of the outer halo globular clusters Palomar 3, Palomar 4, and Eridanus. These three are classic examples of the "second-parameter" anomaly because of their red horizontal-branch morphologies in combination with their low-to-intermediate metallicities. Our color-magnitude diagrams (CMDs) in V, V - I reach V_lim_ {=~} 27.0, clearly delineating the subgiant and turnoff regions and about 3 mag of the unevolved main sequences.
- ID:
- ivo://CDS.VizieR/J/ApJ/805/99
- Title:
- Ages of star clusters in tidal tails of 3 galaxies
- Short Name:
- J/ApJ/805/99
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study the stellar content in the tidal tails of three nearby merging galaxies, NGC 520, NGC 2623, and NGC 3256, using BVI imaging taken with the Advanced Camera for Surveys on board the Hubble Space Telescope (HST). The tidal tails in all three systems contain compact and fairly massive young star clusters, embedded in a sea of diffuse, unresolved stellar light. We compare the measured colors and luminosities with predictions from population synthesis models to estimate cluster ages and find that clusters began forming in tidal tails during or shortly after the formation of the tails themselves. We find a lack of very young clusters (<=10Myr old), implying that eventually star formation shuts off in the tails as the gas is used up or dispersed. There are a few clusters in each tail with estimated ages that are older than the modeled tails themselves, suggesting that these may have been stripped out from the original galaxy disks. The luminosity function of the tail clusters can be described by a single power-law, dN/dL{propto}L^{alpha}^, with -2.6<{alpha}<-2.0. We find a stellar age gradient across some of the tidal tails, which we interpret as a superposition of (1) newly formed stars and clusters along the dense center of the tail and (2) a sea of broadly distributed, older stellar material ejected from the progenitor galaxies.
- ID:
- ivo://CDS.VizieR/J/MNRAS/443/1151
- Title:
- AIMSS Project. I. Compact Stellar Systems
- Short Name:
- J/MNRAS/443/1151
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We describe the structural and kinematic properties of the first compact stellar systems discovered by the Archive of Intermediate Mass Stellar Systems project. These spectroscopically confirmed objects have sizes (~6<R_e_[pc]<500) and masses (~2x10^6^<M*/M_{sun}_<6x10^9^) spanning the range of massive globular clusters, ultracompact dwarfs (UCDs) and compact elliptical galaxies (cEs), completely filling the gap between star clusters and galaxies. Several objects are close analogues to the prototypical cE, M32. These objects, which are more massive than previously discovered UCDs of the same size, further call into question the existence of a tight mass-size trend for compact stellar systems, while simultaneously strengthening the case for a universal 'zone of avoidance' for dynamically hot stellar systems in the mass-size plane. Overall, we argue that there are two classes of compact stellar systems (1) massive star clusters and (2) a population closely related to galaxies. Our data provide indications for a further division of the galaxy-type UCD/cE population into two groups, one population that we associate with objects formed by the stripping of nucleated dwarf galaxies, and a second population that formed through the stripping of bulged galaxies or are lower mass analogues of classical ellipticals. We find compact stellar systems around galaxies in low- to high-density environments, demonstrating that the physical processes responsible for forming them do not only operate in the densest clusters.
- ID:
- ivo://CDS.VizieR/J/ApJS/160/176
- Title:
- alpha-enhanced integrated Lick/IDS spectral indices
- Short Name:
- J/ApJS/160/176
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- All 25 Lick/IDS spectral indices have been computed for the integrated light of simple stellar populations over broad ranges of age and metallicity and with effects from horizontal-branch stars fully implemented. Our models employ {alpha}-enhanced isochrones at the sub-solar metallicity regime, but solar-scaled ones at solar and super-solar metallicity. We have also employed the updated response functions of Houdashelt et al. (2002AAS...201.1405H) at the solar and super-solar metallicity regime, so that we could assess the light-element enhancement phenomena seen from metal-rich early-type galaxies.
- ID:
- ivo://CDS.VizieR/J/A+A/626/A69
- Title:
- An old nova remnant in M22
- Short Name:
- J/A+A/626/A69
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A nova is a cataclysmic event on the surface of a white dwarf in a binary system that increases the overall brightness by several orders of magnitude. Although binary systems with a white dwarf are expected to be overabundant in globular clusters (GCs) compared to the Galaxy, only two novae from Galactic globular clusters have been observed. We present the discovery of an emission nebula in the Galactic globular cluster M 22 (NGC 6656) in observations made with the integral-field spectrograph MUSE. We extract the spectrum of the nebula and use the radial velocity determined from the emission lines to confirm that the nebula is part of NGC 6656. Emission-line ratios are used to determine the electron temperature and density. It is estimated to have a mass of 1 to 17x10^-5^ solar masses. This mass and the emission-line ratios indicate that the nebula is a nova remnant. Its position coincides with the reported location of a 'guest star', an ancient Chinese term for transients, observed in May 48 BCE. With this discovery, this nova may be one of the oldest confirmed extrasolar events recorded in human history.
- ID:
- ivo://CDS.VizieR/J/ApJ/725/200
- Title:
- An updated catalog of M31 globular-like clusters
- Short Name:
- J/ApJ/725/200
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an updated UBVRI photometric catalog containing 970 objects in the field of M31, selected from the Revised Bologna Catalog (RBC v.4.0), including 965, 967, 965, 953, and 827 sources in the individual UBVRI bands, respectively, of which 205, 123, 14, 126, and 109 objects do not have previously published photometry. Photometry is performed using archival images from the Local Group Galaxies Survey, which covers 2.2deg^2^ along the major axis of M31. Detailed comparisons show that our photometry is fully consistent with previous measurements in all filters. We focus on 445 confirmed "globular-like" clusters and candidates, comprising typical globular and young massive clusters. The ages and masses of these objects are derived by comparing their observed spectral-energy distributions with simple stellar population synthesis. Approximately half of the clusters are younger than 2Gyr, suggesting that there has been significant recent active star formation in M31, which is consistent with previous results.
- ID:
- ivo://CDS.VizieR/J/A+A/629/A34
- Title:
- APOGEE stars members of 35 star clusters
- Short Name:
- J/A+A/629/A34
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The vast volume of data generated by modern astronomical surveys offer test beds for the application of machine learning. In these exploratory applications, it is important to evaluate potential existing tools and determine which ones are optimal to extract scientific knowledge from the available observations. This work aims to explore the possibility of using unsupervised clustering algorithms to separate stellar populations with distinct chemical patterns. Star clusters are likely the most chemically homogeneous populations in the Galaxy, and therefore any practical approach to identify distinct stellar populations should at least be able to separate clusters from each other. We have applied eight clustering algorithms combined with four dimensionality reduction strategies to discriminate automatically stellar clusters using chemical abundances of 13 elements. Our test-bed sample includes 18 stellar clusters with a total of 453 stars. We have applied statistical tests showing that some pairs of clusters (e.g., NGC 2458-NGC 2420) are indistinguishable from each other when using the Apache Point Galactic Evolution Experiment (APOGEE) chemical abundances. However, for most clusters we are able to automatically assign membership with metric scores similar to previous works. The confusion level of the automatically selected clusters is consistent with statistical tests that demonstrate the impossibility of perfectly discriminating all the clusters from each other. These statistical tests, and confusion levels establish a limit for the prospect of blindly identifying stars born in the same cluster based solely on chemical abundances. We find that some of the algorithms explored are capable of blindly identify stellar populations with similar ages and chemical distributions in the APOGEE data. Even though we are not able to fully separate the clusters from each other, the main confusion arises from clusters with similar ages. Since there are stellar clusters that are chemically indistinguishable, our study supports the notion of extending weak chemical tagging involving families of clusters instead of individual clusters.
- ID:
- ivo://CDS.VizieR/J/A+A/552/A49
- Title:
- ARGUS images of 6 Galactic globular clusters
- Short Name:
- J/A+A/552/A49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from ground based VLT/FLAMES spectroscopy in combination with HST data for six Galactic globular clusters. The aim of this work is to probe whether these massive clusters host an intermediate-mass black hole at their center using analytical Jeans models.