- ID:
- ivo://CDS.VizieR/J/ApJ/851/48
- Title:
- SLACS. XIII. Galaxy-scale strong lens candidates
- Short Name:
- J/ApJ/851/48
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the full sample of 118 galaxy-scale strong-lens candidates in the Sloan Lens ACS (SLACS) Survey for the Masses (S4TM) Survey, which are spectroscopically selected from the final data release of the Sloan Digital Sky Survey. Follow-up Hubble Space Telescope (HST) imaging observations confirm that 40 candidates are definite strong lenses with multiple lensed images. The foreground-lens galaxies are found to be early-type galaxies (ETGs) at redshifts 0.06-0.44, and background sources are emission-line galaxies at redshifts 0.22-1.29. As an extension of the SLACS Survey, the S4TM Survey is the first attempt to preferentially search for strong-lens systems with relatively lower lens masses than those in the pre-existing strong-lens samples. By fitting HST data with a singular isothermal ellipsoid model, we find that the total projected mass within the Einstein radius of the S4TM strong-lens sample ranges from 3x10^10^M_{sun}_ to 2x10^11^M_{sun}_. In Shu+ (2015ApJ...803...71S), we have derived the total stellar mass of the S4TM lenses to be 5x10^10^M_{sun}_ to 1x10^12^M_{sun}_. Both the total enclosed mass and stellar mass of the S4TM lenses are on average almost a factor of 2 smaller than those of the SLACS lenses, which also represent the typical mass scales of the current strong-lens samples. The extended mass coverage provided by the S4TM sample can enable a direct test, with the aid of strong lensing, for transitions in scaling relations, kinematic properties, mass structure, and dark-matter content trends of ETGs at intermediate-mass scales as noted in previous studies.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/777/97
- Title:
- SL2S galaxy-scale lens sample. III.
- Short Name:
- J/ApJ/777/97
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Hubble Space Telescope (HST) imaging data and Canada-France-Hawaii Telescope (CFHT) near-infrared ground-based images for the final sample of 56 candidate galaxy-scale lenses uncovered in the CFHT Legacy Survey as part of the Strong Lensing in the Legacy Survey (SL2S) project. The new images are used to perform lens modeling, measure surface photometry, and estimate stellar masses of the deflector early-type galaxies (ETGs). Lens modeling is performed on the HST images (or CFHT when HST is not available) by fitting the spatially extended light distribution of the lensed features assuming a singular isothermal ellipsoid mass profile and by reconstructing the intrinsic source light distribution on a pixelized grid. Based on the analysis of systematic uncertainties and comparison with inference based on different methods, we estimate that our Einstein radii are accurate to ~3%. HST imaging provides a much higher success rate in confirming gravitational lenses and measuring their Einstein radii than CFHT imaging does. Lens modeling with ground-based images, however, when successful, yields Einstein radius measurements that are competitive with space-based images. Information from the lens models is used together with spectroscopic information from companion Paper IV (2013ApJ...777...98S) to classify the systems, resulting in a final sample of 39 confirmed (grade A) lenses and 17 promising candidates (grade B,C).
- ID:
- ivo://CDS.VizieR/J/ApJ/884/L31
- Title:
- Spectra & HST obs. of gal. in 1ES1553+113 field
- Short Name:
- J/ApJ/884/L31
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The relationship between galaxies and the state/chemical enrichment of the warm-hot intergalactic medium (WHIM) expected to dominate the baryon budget at low-z provides sensitive constraints on structure formation and galaxy evolution models. We present a deep redshift survey in the field of 1ES1553+113, a blazar with a unique combination of ultraviolet (UV)+X-ray spectra for surveys of the circumgalactic/intergalactic medium (CGM/IGM). Nicastro+ (2018Natur.558..406N) reported the detection of two OVII WHIM absorbers at z=0.4339 and 0.3551 in its spectrum, suggesting that the WHIM is metal rich and sufficient to close the missing baryons problem. Our survey indicates that the blazar is a member of a z=0.433 group and that the higher-z OVII candidate arises from its intragroup medium. The resulting bias precludes its use in baryon censuses. The z=0.3551 candidate occurs in an isolated environment 630kpc from the nearest galaxy (with stellar mass logM_*_/M_{sun}_~9.7), which we show is unexpected for the WHIM. Finally, we characterize the galactic environments of broad HI Ly{alpha} absorbers (Doppler widths of b=40-80km/s; T<~4x10^5^K) that provide metallicity-independent WHIM probes. On average, broad Ly{alpha} absorbers are ~2x closer to the nearest luminous (L>0.25L*) galaxy (700kpc) than narrow (b<30km/s; T<~4x10^5^K) ones (1300kpc) but ~2x further than OVI absorbers (350kpc). These observations suggest that gravitational collapse heats portions of the IGM to form the WHIM, but with feedback that does not enrich the IGM far beyond galaxy/group halos to levels currently observable in UV/X-ray metal lines.
- ID:
- ivo://CDS.VizieR/J/ApJ/883/157
- Title:
- Spectrophotometric redshifts of GOODS galaxies
- Short Name:
- J/ApJ/883/157
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the accuracy of 4000{AA}/Balmer-break based redshifts by combining Hubble Space Telescope (HST) grism data with photometry. The grism spectra are from the Probing Evolution And Reionization Spectroscopically survey with HST using the G800L grism on the Advanced Camera for Surveys. The photometric data come from a compilation by the 3D-HST collaboration of imaging from multiple surveys (notably, the Cosmic Assembly Near-infrared Deep Extragalactic Survey (CANDELS) and 3D-HST). We show evidence that spectrophotometric redshifts (SPZs) typically improve the accuracy of photometric redshifts by ~17%-60%. Our SPZ method is a template-fitting-based routine that accounts for correlated data between neighboring points within grism spectra via the covariance matrix formalism and also accounts for galaxy morphology along the dispersion direction. We show that the robustness of the SPZ is directly related to the fidelity of the D4000 measurement. We also estimate the accuracy of continuum-based redshifts, i.e., for galaxies that do not contain strong emission lines, based on the grism data alone ({sigma}_{Delta}z/(1+z)_^NMAD^<~0.06). Given that future space-based observatories like Wide Field InfraRed Survey Telescope and Euclid will spend a significant fraction of time on slitless spectroscopic observations, we estimate number densities for objects with |{Delta}z/(1+z_s_)|<=0.02. We predict ~700-4400 galaxies degree^-2^ for galaxies with D4000>1.1 and |{Delta}z/(1+z_s_)|<=0.02 to a limiting depth of i_AB_=24mag. This is especially important in the absence of an accompanying rich photometric data set like the existing one for the CANDELS fields, where redshift accuracy from future surveys will rely only on the presence of a feature like the 4000{AA}/Balmer breaks or the presence of emission lines within the grism spectra.
- ID:
- ivo://CDS.VizieR/J/ApJ/695/1591
- Title:
- Spectrophotometry in PEARS fields
- Short Name:
- J/ApJ/695/1591
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Deep ACS slitless grism observations and identification of stellar sources are presented within the Great Observatories Origins Deep Survey North and South fields which were obtained in the Probing Evolution And Reionization Spectroscopically (PEARS) program. It is demonstrated that even low-resolution spectra can be a very powerful means of identifying stars in the field, especially low-mass stars with stellar types M0 and later. The PEARS fields lay within the larger GOODS fields, and we used new, deeper images to further refine the selection of stars in the PEARS field, down to a magnitude of z_850_=25 using a newly developed stellarity parameter. The total number of stars with reliable spectroscopic and morphological identification was 95 and 108 in the north and south fields, respectively.
- ID:
- ivo://CDS.VizieR/J/AJ/145/125
- Title:
- Spectroscopy and HST photometry in Westerlund 2
- Short Name:
- J/AJ/145/125
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a spectroscopic and photometric determination of the distance to the young Galactic open cluster Westerlund 2 using WFPC2 imaging from the Hubble Space Telescope (HST) and ground-based optical spectroscopy. HST imaging in the F336W, F439W, F555W, and F814W filters resolved many sources previously undetected in ground-based observations and yielded photometry for 1136 stars. We identified 15 new O-type stars, along with two probable binary systems, including MSP188 (O3+O5.5). We fit reddened spectral energy distributions based on the Padova isochrones to the photometric data to determine individual reddening parameters R_V_ and A_V_for O-type stars in Wd2. We find average values <R_V_>=3.77+/-0.09 and <A_V_>=6.51+/-0.38mag, which result in a smaller distance than most other spectroscopic and photometric studies. After a statistical distance correction accounting for close unresolved binaries (factor of 1.08), our spectroscopic and photometric data on 29 O-type stars yield that Westerlund 2 has a distance <d>=4.16+/-0.07(random)+0.26(systematic)kpc. The cluster's age remains poorly constrained, with an upper limit of 3Myr. Finally, we report evidence of a faint mid-IR polycyclic aromatic hydrocarbon ring surrounding the well-known binary candidate MSP 18, which appears to lie at the center of a secondary stellar grouping within Westerlund 2.
- ID:
- ivo://CDS.VizieR/J/ApJ/885/53
- Title:
- Spectroscopy & HST photometry of galaxy Leo V
- Short Name:
- J/ApJ/885/53
- Date:
- 16 Mar 2022 09:00:29
- Publisher:
- CDS
- Description:
- The ultra-faint dwarf galaxy Leo V has shown both photometric overdensities and kinematic members at large radii, along with a tentative kinematic gradient, suggesting that it may have undergone a close encounter with the Milky Way. We investigate these signs of disruption through a combination of (I) high precision photometry obtained with the Hubble Space Telescope (HST), (II) two epochs of stellar spectra obtained with the Hectochelle Spectrograph on the MMT, and (III) measurements from the Gaia mission. Using the HST data, we examine one of the reported stream-like overdensities at large radii, and conclude that it is not a true stellar stream, but instead a clump of foreground stars and background galaxies. Our spectroscopic analysis shows that one known member star is likely a binary, and challenges the membership status of three others, including two distant candidates that had formerly provided evidence for overall stellar mass loss. We also find evidence that the proposed kinematic gradient across Leo V might be due to small number statistics. We update the systemic proper motion of Leo V, finding ({mu}_{alpha}_/cos{delta},{mu}_{delta}_)= (0.009{+/-}0.560,-0.777{+/-}0 .314)mas/yr, which is consistent with its reported orbit that did not put Leo V at risk of being disturbed by the Milky Way. These findings remove most of the observational clues that suggested Leo V was disrupting; however, we also find new plausible member stars, two of which are located >5 half-light radii from the main body. These stars require further investigation. Therefore, the nature of Leo V still remains an open question.
- ID:
- ivo://CDS.VizieR/J/ApJ/633/174
- Title:
- Spheroidals and bulge dominated galaxies
- Short Name:
- J/ApJ/633/174
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a comprehensive catalog of high signal-to-noise ratio spectra obtained with DEIMOS on the Keck II telescope for a sample of F850LP<22.43mag(AB) field spheroidal (E+S0 galaxies; 165) and bulge-dominated disk (61) galaxies in the redshift range 0.2<z<1.2, selected on the basis of visual morphology from the northern field of the Great Observatories Origins Deep Survey (GOODS-N). We discuss sample selection, photometric properties, and spectral reduction. We derive scale lengths, surface brightnesses, and photometric inhomogeneities from the ACS data and redshifts, stellar velocity dispersions, and [OII] and H{delta} equivalent widths from the Keck spectroscopy. Using the published 2Ms Chandra Deep Field-North X-ray catalog (Cat. <J/AJ/126/632>), we identify active galactic nuclei (AGNs) to clarify the origin of emission lines seen in the Keck spectra.
- ID:
- ivo://CDS.VizieR/J/A+A/628/A60
- Title:
- Star cluster formation in a tidal debris
- Short Name:
- J/A+A/628/A60
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The formation of globular clusters remains an open debate. Dwarf starburst galaxies are efficient at forming young massive clusters with similar masses as globular clusters and may hold the key to understanding their formation. We study star cluster formation in a tidal debris - including the vicinity of three tidal dwarf galaxies - in a massive gas dominated collisional ring around NGC 5291. These dwarfs have physical parameters which differ significantly from local starbursting dwarfs. They are gas-rich, highly turbulent, have a gas metallicity already enriched up to half-solar, and are expected to be free of dark matter. The aim is to study massive star cluster formation in this as yet unexplored type of environment. We use imaging from the Hubble Space Telescope using broadband filters covering the wavelength range from the near- ultraviolet to the near-infrared. We determine the masses and ages of the cluster candidates by using the spectral energy distribution- fitting code CIGALE, carefully considering age-extinction degeneracy effects on the estimation of the physical parameters. Results. We find that the tidal dwarf galaxies in the ring of NGC 5291 are forming star clusters with an average efficiency of about 40%, comparable to blue compact dwarf galaxies. We also find massive star clusters for which the photometry suggests that they were formed at the very birth of the tidal dwarf galaxies and have survived for several hundred million years. Therefore our study shows that extended tidal dwarf galaxies and compact clusters may be formed simultaneously. In the specific case observed here, the young star clusters are not massive enough to survive for a Hubble time. However one may speculate that similar objects at higher redshift, with higher star formation rate, might form some of the long lived globular clusters.
300. Star clusters in M82
- ID:
- ivo://CDS.VizieR/J/ApJ/679/404
- Title:
- Star clusters in M82
- Short Name:
- J/ApJ/679/404
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results obtained from an objective search for stellar clusters, both in the currently active nuclear starburst region, and in the poststarburst disk of M82. Images obtained with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST) in F435W (B), F555W (V), and F814W (I) filters were used in the search for the clusters. We detected 653 clusters, of which 393 are located outside the central 450pc in the poststarburst disk of M82. The luminosity function of the detected clusters shows an apparent turnover at B=22mag (M_B_=-5.8), which we interpret from Monte Carlo simulations as due to incompleteness in the detection of faint clusters, rather than an intrinsic lognormal distribution. We derived a photometric mass of every detected cluster from models of simple stellar populations assuming a mean age of either 8 (nuclear clusters) or 100 (disk clusters) million years old. The mass functions of the disk (older) and the nuclear (younger) clusters follow power laws, the former being marginally flatter ({alpha}=1.5+/-0.1) than the latter ({alpha}=1.8+/-0.1). The distribution of sizes (FWHM) of clusters brighter than the apparent turnover magnitude (mass>~2x10^4^M_{sun}_) can be described by a lognormal function.