- ID:
- ivo://CDS.VizieR/J/ApJS/209/25
- Title:
- H_2_O + CH_3_OH maser survey of Orion protostars
- Short Name:
- J/ApJS/209/25
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The results of a maser survey toward 99 protostars in the Orion molecular cloud complex are presented. The target sources are low-mass protostars identified from infrared observations. Single-dish observations were carried out in the water maser line at 22GHz and the methanol class I maser lines at 44, 95, and 133GHz. Most of the detected sources were mapped to determine the source positions. Five water maser sources were detected, and they are excited by HH 1-2 VLA 3, HH 1-2 VLA 1, L1641N MM1/3, NGC 2071 IRS 1/3, and an object in the OMC 3 region. The water masers showed significant variability in intensity and velocity with time scales of 1 month or shorter. Four methanol emission sources were detected, and those in the OMC 2 FIR 3/4 and L1641N MM1/3 regions are probably masers. The methanol emission from the other two sources in the NGC 2071 IRS 1-3 and V380 Ori NE regions are probably thermal. For the water masers, the number of detections per protostar in the survey region is about 2%, which suggests that the water masers of low-mass protostars are rarely detectable. The methanol class I maser of low-mass protostars is an even rarer phenomenon, with a detection rate much smaller than 1%.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/658/1096
- Title:
- H2O maser classification
- Short Name:
- J/ApJ/658/1096
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of 22GHz H2O maser observations of a sample of 85 post-asymptotic giant branch (post-AGB) candidate stars, selected on the basis of their OH 1612MHz maser and far-infrared properties. All sources were observed with the Tidbinbilla 70m radio telescope, and 21 detections were made; 86GHz SiO Mopra observations of a subset of the sample are also presented.
- ID:
- ivo://CDS.VizieR/J/ApJ/669/424
- Title:
- H2O maser emissions of IRAS 19134+2131
- Short Name:
- J/ApJ/669/424
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using the Very Long Baseline Array at six epochs, we have observed H_2_O maser emission in the preplanetary nebula IRAS 19134+2131 (I19134), in which the H_2_O maser spectrum has two groups of emission features separated in radial velocity by ~100km/s. We also obtained optical images of I19134 with the Hubble Space Telescope to locate the bipolar reflection nebula in this source for the first time.
- ID:
- ivo://CDS.VizieR/J/ApJ/757/46
- Title:
- Hot methane (CH4) line list
- Short Name:
- J/ApJ/757/46
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present comprehensive experimental line lists of methane (CH_4_) at high temperatures obtained by recording Fourier transform infrared emission spectra. Calibrated line lists are presented for the temperatures 300-1400{deg}C at twelve 100{deg}C intervals spanning the 960-5000/cm (2.0-10.4{mu}m) region of the infrared. This range encompasses the dyad, pentad, and octad regions, i.e., all fundamental vibrational modes along with a number of combination, overtone and hot bands. Using our CH_4_ spectra, we have estimated empirical lower state energies (E_low_ in cm^-1^) and our values have been incorporated into the line lists along with line positions ({nu} in cm^-1^) and calibrated line intensities (S' in cm/molecule). We expect our hot CH_4_ line lists to find direct application in the modeling of planetary atmospheres and brown dwarfs.
- ID:
- ivo://CDS.VizieR/J/ApJ/871/63
- Title:
- How to constrain your M dwarf. II. Nearby binaries
- Short Name:
- J/ApJ/871/63
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The mass-luminosity relation for late-type stars has long been a critical tool for estimating stellar masses. However, there is growing need for both a higher-precision relation and a better understanding of systematic effects (e.g., metallicity). Here we present an empirical relationship between M_Ks_ and M_*_ spanning 0.075M_{sun}_<M_*_<0.70M_{sun}_. The relation is derived from 62 nearby binaries, whose orbits we determine using a combination of near infra-red (Keck/NIRC2) imaging, archival adaptive optics data, and literature astrometry. From their orbital parameters, we determine the total mass of each system, with a precision better than 1% in the best cases. We use these total masses, in combination with resolved Ks magnitudes and system parallaxes, to calibrate the M_Ks_-M_*_ relation. The resulting posteriors can be used to determine masses of single stars with a precision of 2%-3%, which we confirm by testing the relation on stars with individual dynamical masses from the literature. The precision is limited by scatter around the best-fit relation beyond measured M_*_ uncertainties, perhaps driven by intrinsic variation in the M_Ks_-M_*_ relation or underestimated uncertainties in the input parallaxes. We find that the effect of [Fe/H] on the M_Ks_-M_*_ relation is likely negligible for metallicities in the solar neighborhood (0.0%{+/-}2.2% change in mass per dex change in [Fe/H]). This weak effect is consistent with predictions from the Dartmouth Stellar Evolution Database, but inconsistent with those from modules for experiments in stellar astrophysics (MESA) Isochrones and Stellar Tracks (MIST) (at 5{sigma}). A sample of binaries with a wider range of abundances will be required to discern the importance of metallicity in extreme populations (e.g., in the Galactic halo or thick disk).
- ID:
- ivo://CDS.VizieR/J/AJ/160/259
- Title:
- HPF RVs and TESS photometry of TOI-1266
- Short Name:
- J/AJ/160/259
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the validation of two planets orbiting the nearby (36pc) M2 dwarf TOI-1266 observed by the TESS mission. This system is one of a few M dwarf multiplanet systems with close-in planets where the inner planet is substantially larger than the outer planet. The inner planet is sub-Neptune-sized (R=2.46{+/-}0.08R{Earth}) with an orbital period of 10.9days, while the outer planet has a radius of 1.67_-0.11_^+0.09^R{Earth} and resides in the exoplanet radius valley-the transition region between rocky and gaseous planets. With an orbital period of 18.8days, the outer planet receives an insolation flux of 2.4 times that of Earth, similar to the insolation of Venus. Using precision near-infrared radial velocities with the Habitable-zone Planet Finder Spectrograph, we place upper mass limits of 15.9 and 6.4M{Earth} at 95% confidence for the inner and outer planet, respectively. A more precise mass constraint of both planets, achievable with current radial velocity instruments given the host star brightness (V=12.9, J=9.7), will yield further insights into the dominant processes sculpting the exoplanet radius valley.
- ID:
- ivo://CDS.VizieR/J/ApJ/859/38
- Title:
- HST grism obs. of CARLA galaxy cluster candidates
- Short Name:
- J/ApJ/859/38
- Date:
- 08 Mar 2022 13:56:29
- Publisher:
- CDS
- Description:
- We report spectroscopic results from our 40-orbit Hubble Space Telescope slitless grism spectroscopy program observing the 20 densest Clusters Around Radio-Loud AGN (CARLA) candidate galaxy clusters at 1.4<z<2.8. These candidate rich structures, among the richest and most distant known, were identified on the basis of [3.6]-[4.5] color from a 408hr multi-cycle Spitzer program targeting 420 distant radio-loud AGN. We report the spectroscopic confirmation of 16 distant structures at 1.4<z<2.8 associated with the targeted powerful high-redshift radio-loud AGN. We also report the serendipitous discovery and spectroscopic confirmation of seven additional structures at 0.87<z<2.12 not associated with the targeted radio-loud AGN. We find that 10^10^-10^11^M_{sun}_ member galaxies of our confirmed CARLA structures form significantly fewer stars than their field counterparts at all redshifts within 1.4<=z<=2. We also observe higher star-forming activity in the structure cores up to z=2, finding similar trends as cluster surveys at slightly lower redshifts (1.0<z<1.5). By design, our efficient strategy of obtaining just two grism orbits per field only obtains spectroscopic confirmation of emission line galaxies. Deeper spectroscopy will be required to study the population of evolved, massive galaxies in these (forming) clusters. Lacking multi-band coverage of the fields, we adopt a very conservative approach of calling all confirmations "structures," although we note that a number of features are consistent with some of them being bona fide galaxy clusters. Together this survey represents a unique and large homogenous sample of spectroscopically confirmed structures at high redshifts, potentially more than doubling the census of confirmed, massive clusters at z>1.4.
- ID:
- ivo://CDS.VizieR/J/MNRAS/417/114
- Title:
- HST/NICMOS Galactic Center survey catalogue
- Short Name:
- J/MNRAS/417/114
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Our Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer (HST/NICMOS) Paschen {alpha} survey of the Galactic Centre, first introduced by Wang et al. (2010MNRAS.402..895W), provides a uniform, panoramic, high-resolution map of stars and an ionized diffuse gas in the central 416arcmin^2^ of the Galaxy. This survey was carried out with 144 HST orbits using two narrow-band filters at 1.87 and 1.90um in NICMOS Camera 3. In this paper, we describe in detail the data reduction and mosaicking procedures followed, including background level matching and astrometric corrections. We have detected ~570000 near-infrared (near-IR) sources using the 'starfinder' software and are able to quantify photometric uncertainties of the detections.
- ID:
- ivo://CDS.VizieR/J/ApJ/900/183
- Title:
- HST NIR grism sp. of strong-lensing galaxy clusters
- Short Name:
- J/ApJ/900/183
- Date:
- 15 Feb 2022 11:31:32
- Publisher:
- CDS
- Description:
- We present the hitherto largest sample of gas-phase metallicity radial gradients measured at sub-kpc resolution in star-forming galaxies in the redshift range of 1.2<z<=2.3. These measurements are enabled by the synergy of slitless spectroscopy from the Hubble Space Telescope near-infrared channels and the lensing magnification from foreground galaxy clusters. Our sample consists of 76 galaxies with stellar mass ranging from 10^7^ to 10^10^M_{sun}, an instantaneous star formation rate in the range of [1,100]M_{sun}_/yr, and global metallicity [1/12,2] of solar. At a 2{sigma} confidence level, 15/76 galaxies in our sample show negative radial gradients, whereas 7/76 show inverted gradients. Combining ours and all other metallicity gradients obtained at a similar resolution currently available in the literature, we measure a negative mass dependence of {Delta}log(O/H)/{Delta}r[dex/kpc]=(-0.020+/-0.007)+(-0.016+/-0.008) log(M_*_/10^9.4^M_{sun}_), with the intrinsic scatter being {sigma}=0.060+/-0.006 over 4 orders of magnitude in stellar mass. Our result is consistent with strong feedback, not secular processes, being the primary governor of the chemostructural evolution of star-forming galaxies during the disk mass assembly at cosmic noon. We also find that the intrinsic scatter of metallicity gradients increases with decreasing stellar mass and increasing specific star formation rate. This increase in the intrinsic scatter is likely caused by the combined effect of cold-mode gas accretion and merger-induced starbursts, with the latter more predominant in the dwarf mass regime of M_*_<~10^9^M_{sun}_.
- ID:
- ivo://CDS.VizieR/J/ApJ/779/137
- Title:
- HST NIR spectroscopy of ISCS z>1 galaxy clusters
- Short Name:
- J/ApJ/779/137
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Hubble Space Telescope near-IR spectroscopy for 18 galaxy clusters at 1.0<z<1.5 in the IRAC Shallow Cluster Survey (ISCS). We use Wide Field Camera 3 grism data to spectroscopically identify H{alpha} emitters in both the cores of galaxy clusters as well as in field galaxies. We find a large cluster-to-cluster scatter in the star formation rates within a projected radius of 500kpc, and many of our clusters (~60%) have significant levels of star formation within a projected radius of 200kpc. A stacking analysis reveals that dust reddening in these star-forming galaxies is positively correlated with stellar mass and may be higher in the field than the cluster at a fixed stellar mass. This may indicate a lower amount of gas in star-forming cluster galaxies than in the field population. Also, H{alpha} equivalent widths of star-forming galaxies in the cluster environment are still suppressed below the level of the field. This suppression is most significant for lower mass galaxies (logM_*_<10.0M_{sun}_). We therefore conclude that environmental effects are still important at 1.0<z<1.5 for star-forming galaxies in galaxy clusters with logM_*_<~10.0M_{sun}_.