- ID:
- ivo://CDS.VizieR/J/AJ/162/61
- Title:
- Radial velocity follow up of Barnard's star with HPF
- Short Name:
- J/AJ/162/61
- Date:
- 14 Mar 2022 07:00:45
- Publisher:
- CDS
- Description:
- Barnard's star is among the most studied stars given its proximity to the Sun. It is often considered the radial velocity (RV) standard for fully convective stars due to its RV stability and equatorial decl. Recently, an M_sini_=3.3M{Earth} super-Earth planet candidate with a 233day orbital period was announced by Ribas et al. New observations from the near-infrared Habitable-zone Planet Finder (HPF) Doppler spectrometer do not show this planetary signal. We ran a suite of experiments on both the original data and a combined original + HPF data set. These experiments include model comparisons, periodogram analyses, and sampling sensitivity, all of which show the signal at the proposed period of 233days is transitory in nature. The power in the signal is largely contained within 211 RVs that were taken within a 1000 day span of observing. Our preferred model of the system is one that features stellar activity without a planet. We propose that the candidate planetary signal is an alias of the 145day rotation period. This result highlights the challenge of analyzing long-term, quasi-periodic activity signals over multiyear and multi-instrument observing campaigns.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/157/97
- Title:
- Radial velocity measurements of K2-3 & GJ3470
- Short Name:
- J/AJ/157/97
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report improved masses, radii, and densities for four planets in two bright M-dwarf systems, K2-3 and GJ3470, derived from a combination of new radial velocity and transit observations. Supplementing K2 photometry with follow-up Spitzer transit observations refined the transit ephemerides of K2-3 b, c, and d by over a factor of 10. We analyze ground-based photometry from the Evryscope and Fairborn Observatory to determine the characteristic stellar activity timescales for our Gaussian Process fit, including the stellar rotation period and activity region decay timescale. The stellar rotation signals for both stars are evident in the radial velocity data and is included in our fit using a Gaussian process trained on the photometry. We find the masses of K2-3 b, K2-3 c, and GJ3470 b to be 6.48_-0.93_^+0.99^, 2.14_-1.04_^+1.08^, and 12.58_-1.28_^+1.31^ M_{Earth}_, respectively. K2-3 d was not significantly detected and has a 3{sigma} upper limit of 2.80 M_{Earth}_. These two systems are training cases for future TESS systems; due to the low planet densities ({rho}<3.7 g/cm^-3^) and bright host stars (K<9 mag), they are among the best candidates for transmission spectroscopy in order to characterize the atmospheric compositions of small planets.
- ID:
- ivo://CDS.VizieR/J/A+A/614/A122
- Title:
- Radial-velocity of CARMENES M dwarfs
- Short Name:
- J/A+A/614/A122
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Previous simulations predicted the activity-induced radial-velocity (RV) variations of M dwarfs to range from ~1cm/s to ~1km/s, depending on various stellar and activity parameters. We investigate the observed relations between RVs, stellar activity, and stellar parameters of M dwarfs by analyzing CARMENES high-resolution visual-channel spectra (0.5-1um), which were taken within the CARMENES RV planet survey during its first 20 months of operation. During this time, 287 of the CARMENES- sample stars were observed at least five times. From each spectrum we derived a relative RV and a measure of chromospheric Halpha emission. In addition, we estimated the chromatic index (CRX) of each spectrum, which is a measure of the RV wavelength dependence. Despite having a median number of only 11 measurements per star, we show that the RV variations of the stars with RV scatter of >10m/s and a projected rotation velocity vsini>2km/s are caused mainly by activity. We name these stars 'active RV-loud stars' and find their occurrence to increase with spectral type: from ~3% for early-type M dwarfs (M0.0-2.5V) through ~30% for mid-type M dwarfs (M3.0-5.5V) to >50% for late-type M dwarfs (M6.0-9.0V). Their RV-scatter amplitude is found to be correlated mainly with vsini. For about half of the stars, we also find a linear RV-CRX anticorrelation, which indicates that their activity-induced RV scatter is lower at longer wavelengths. For most of them we can exclude a linear correlation between RV and Halpha emission. Our results are in agreement with simulated activity-induced RV variations in M dwarfs. The RV variations of most active RV-loud M dwarfs are likely to be caused by dark spots on their surfaces, which move in and out of view as the stars rotate.
- ID:
- ivo://CDS.VizieR/J/A+A/625/A68
- Title:
- Radii and masses of the CARMENES targets
- Short Name:
- J/A+A/625/A68
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We determine the radii and masses of 293 nearby, bright M dwarfs of the CARMENES survey. This is the first time that such a large and homogeneous high-resolution (R>80000) spectroscopic survey has been used to derive these fundamental stellar parameters. We derived the radii using Stefan-Boltzmann's law. We obtained the required effective temperatures Teff from a spectral analysis and we obtained the required luminosities L from integrated broadband photometry together with the Gaia DR2 parallaxes. The mass was then determined using a mass-radius relation that we derived from eclipsing binaries known in the literature. We compared this method with three other methods: (1) We calculated the mass from the radius and the surface gravity logg, which was obtained from the same spectral analysis as Teff. (2) We used a widely used infrared mass-magnitude relation. (3) We used a Bayesian approach to infer stellar parameters from the comparison of the absolute magnitudes and colors of our targets with evolutionary models. Between spectral types M0V and M7V our radii cover the range 0.1R_{sun}_<R<0.6R_{sun}_ with an error of 2-3% and our masses cover 0.09M_{sun}_<M<0.6M_{sun}_ with an error of 3-5%. We find good agreement between the masses determined with these different methods for most of our targets. Only the masses of very young objects show discrepancies. This can be well explained with the assumptions that we used for our methods.
- ID:
- ivo://CDS.VizieR/J/ApJ/701/1922
- Title:
- Radio interferometric planet search. I.
- Short Name:
- J/ApJ/701/1922
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Radio astrometry of nearby, low-mass stars has the potential to be a powerful tool for the discovery and characterization of planetary companions. We present a Very Large Array survey of 172 active M dwarfs at distances of less than 10pc. Twenty-nine stars were detected with flux densities greater than 100uJy. We observed seven of these stars with the Very Long Baseline Array at milliarcsecond resolution in three separate epochs. With a detection threshold of 500uJy in images of sensitivity 1{sigma}~100uJy, we detected three stars three times (GJ 65B, GJ 896A, GJ 4247), one star twice (GJ 285), and one star once (GJ 803). Two stars were undetected (GJ 412B and GJ 1224). For the four stars detected in multiple epochs, residuals from the optically determined apparent motions have an root-mean-square deviation of ~0.2 milliarcseconds, consistent with statistical noise limits. Combined with previous optical astrometry, these residuals provide acceleration upper limits that allow us to exclude planetary companions more massive than 3-6M_Jup_ at a distance of ~1AU with a 99% confidence level.
- ID:
- ivo://CDS.VizieR/J/AJ/157/63
- Title:
- Radius relations for low-metallicity M-dwarf stars
- Short Name:
- J/AJ/157/63
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- M subdwarfs are low-metallicity M dwarfs that typically inhabit the halo population of the Galaxy. Metallicity controls the opacity of stellar atmospheres; in metal-poor stars, hydrostatic equilibrium is reached at a smaller radius, leading to smaller radii for a given effective temperature. We compile a sample of 88 stars that span spectral classes K7 to M6 and include stars with metallicity classes from solar-metallicity dwarf stars to the lowest metallicity ultra subdwarfs to test how metallicity changes the stellar radius. We fit models to Palomar Double Spectrograph (DBSP) optical spectra to derive effective temperatures (T_eff_) and we measure bolometric luminosities (L_bol_) by combining broad wavelength-coverage photometry with Gaia parallaxes. Radii are then computed by combining the T_eff_ and L_bol_ using the Stefan-Boltzman law. We find that for a given temperature, ultra subdwarfs can be as much as five times smaller than their solar-metallicity counterparts. We present color-radius and color-surface brightness relations that extend down to [Fe/H] of -2.0 dex, in order to aid the radius determination of M subdwarfs, which will be especially important for the WFIRST exoplanetary microlensing survey.
- ID:
- ivo://CDS.VizieR/J/ApJ/822/97
- Title:
- Rotation-Activity Correlations in K-M dwarfs. I.
- Short Name:
- J/ApJ/822/97
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The reliable determination of rotation-activity correlations (RACs) depends on precise measurements of the following stellar parameters: T_eff_, parallax, radius, metallicity, and rotational speed vsini. In this paper, our goal is to focus on the determination of these parameters for a sample of K and M dwarfs. In a future paper (PaperII; Houdebine+, 2017, J/ApJ/837/96), we will combine our rotational data with activity data in order to construct RACs. Here, we report on a determination of effective temperatures based on the (R-I)_C_ color from the calibrations of Mann+ (2015, J/ApJ/804/64) and Kenyon & Hartmann (1995, J/ApJS/101/117) for four samples of late-K, dM2, dM3, and dM4 stars. We also determine stellar parameters (T_eff_, log(g), and [M/H]) using the principal component analysis-based inversion technique for a sample of 105 late-K dwarfs. We compile all effective temperatures from the literature for this sample. We determine empirical radius-[M/H] correlations in our stellar samples. This allows us to propose new effective temperatures, stellar radii, and metallicities for a large sample of 612 late-K and M dwarfs. Our mean radii agree well with those of Boyajian+ (2012, J/ApJ/757/112). We analyze HARPS and SOPHIE spectra of 105 late-K dwarfs, and we have detected vsini in 92 stars. In combination with our previous vsini measurements in M and K dwarfs, we now derive P/sini measures for a sample of 418 K and M dwarfs. We investigate the distributions of P/sini, and we show that they are different from one spectral subtype to another at a 99.9% confidence level.
- ID:
- ivo://CDS.VizieR/J/ApJ/837/96
- Title:
- Rotation-Activity Correlations in K-M dwarfs II.
- Short Name:
- J/ApJ/837/96
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study the rotation-activity correlations (RACs) in a sample of stars from spectral type dK4 to dM4. We study RACs using chromospheric data and coronal data. We study the Ca II line surface fluxes-P/sini RACs. We fit the RACs with linear homoscedastic and heteroscedastic regression models. We find that these RACs differ substantially from one spectral sub-type to another. For dM3 and dM4 stars, we find that the RACs cannot be described by a simple model, but instead that there may exist two distinct RAC behaviors for the low-activity and the high-activity stellar sub-samples, respectively. Although these results are preliminary and will need confirmation, the data suggest that these distinct RACs may be associated with different dynamo regimes. We also study R'_HK_ as a function of the Rossby number R_0_. We find (i) for dK4 stars, R'_HK_ as a function of R_0_ agrees well with previous results for F-G-K stars and (ii) in dK6, dM2, dM3, and dM4 stars, at a given R_0_, the values of R'_HK_ lie at a factor of 3, 10, 20, and 90, respectively, below the F-G-K RAC. Our results suggest a significant decrease in the efficiency of the dynamo mechanism(s) as regards chromospheric heating before and at dM3, i.e., before and at the transition to complete convection. We also show that the ratio of coronal heating to chromospheric heating L_X_/L_HK_ increases by a factor of 100 between dK4 and dM4 stars.
- ID:
- ivo://CDS.VizieR/J/AJ/156/275
- Title:
- Rotational evolution of young, binary M dwarfs
- Short Name:
- J/AJ/156/275
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have analyzed K2 light curves for more than 3000 low-mass stars in the ~8 Myr old Upper Sco association, the ~125 Myr age Pleiades open cluster, and the ~700 Myr old Hyades and Praesepe open clusters to determine stellar rotation rates. Many of these K2 targets show two distinct periods, and for the lowest-mass stars in these clusters, virtually all of these systems with two periods are photometric binaries. The most likely explanation is that we are detecting the rotation periods for both components of these binaries. We explore the evolution of the rotation rate in both components of photometric binaries relative to one another and to nonphotometric binary stars. In Upper Sco and the Pleiades, these low-mass binary stars have periods that are much shorter on average and much closer to each other than would be true if drawn at random from the M dwarf single stars. In Upper Sco, this difference correlates strongly with the presence or absence of infrared excesses due to primordial circumstellar disks-the single-star population includes many stars with disks, and their rotation periods are distinctively longer on average than their binary star cousins of the same mass. By Praesepe age, the significance of the difference in rotation rate between the single and binary low-mass M dwarf stars is much less, suggesting that angular momentum loss from winds for fully convective zero-age main-sequence stars erases memory of the rotation rate dichotomy for binary and single very low mass stars at later ages.
- ID:
- ivo://CDS.VizieR/J/ApJ/704/975
- Title:
- Rotational velocities for M dwarfs
- Short Name:
- J/ApJ/704/975
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present spectroscopic rotation velocities (vsini) for 56 M dwarf stars using high-resolution Hobby-Eberly Telescope High Resolution Spectrograph red spectroscopy. In addition, we have also determined photometric effective temperatures, masses, and metallicities ([Fe/H]) for some stars observed here and in the literature where we could acquire accurate parallax measurements and relevant photometry. We have increased the number of known vsini values for mid M stars by around 80% and can confirm a weakly increasing rotation velocity with decreasing effective temperature. Our sample of vsini is peak at low velocities (~3km/s). We find a change in the rotational velocity distribution between early M and late M stars, which is likely due to the changing field topology between partially and fully convective stars. There is also a possible further change in the rotational distribution toward the late M dwarfs where dust begins to play a role in the stellar atmospheres. We also link vsini to age and show how it can be used to provide mid-M star age limits. When all literature velocities for M dwarfs are added to our sample, there are 198 with vsini<=10km/s and 124 in the mid-to-late M star regime (M3.0-M9.5) where measuring precision optical radial velocities is difficult. In addition, we also search the spectra for any significant Half emission or absorption. Forty three percent were found to exhibit such emission and could represent young, active objects with high levels of radial-velocity noise. We acquired two epochs of spectra for the star GJ1253 spread by almost one month and the Half profile changed from showing no clear signs of emission, to exhibiting a clear emission peak. Four stars in our sample appear to be low-mass binaries (GJ1080, GJ3129, Gl802, and LHS3080), with both GJ3129 and Gl802 exhibiting double Half emission features. The tables presented here will aid any future M star planet search target selection to extract stars with low vsini.