- ID:
- ivo://CDS.VizieR/J/AJ/161/172
- Title:
- The Solar Neighborhood. XLVII. Mdwarfs with STIS
- Short Name:
- J/AJ/161/172
- Date:
- 18 Jan 2022
- Publisher:
- CDS
- Description:
- We use HST/STIS optical spectroscopy of 10 M-dwarfs in five closely separated binary systems to test models of M-dwarf structure and evolution. Individual dynamical masses ranging from 0.083 to 0.405M{sun} for all stars are known from previous work. We first derive temperature, radius, luminosity, surface gravity, and metallicity by fitting the BT-Settl atmospheric models. We verify that our methodology agrees with empirical results from long-baseline optical interferometry for stars of similar spectral types. We then test whether or not evolutionary models can predict those quantities given the stars' known dynamical masses and the conditions of coevality and equal metallicity within each binary system. We apply this test to five different evolutionary model sets: the Dartmouth models, the MESA/MIST models, the models of Baraffe et al., the PARSEC models, and the YaPSI models. We find marginal agreement between evolutionary model predictions and observations, with few cases where the models respect the condition of coevality in a self-consistent manner. We discuss the pros and cons of each family of models and compare their predictive power.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/161/65
- Title:
- THYME. IV. 3 Exoplanets around TOI-451 B
- Short Name:
- J/AJ/161/65
- Date:
- 11 Mar 2022
- Publisher:
- CDS
- Description:
- Young exoplanets can offer insight into the evolution of planetary atmospheres, compositions, and architectures. We present the discovery of the young planetary system TOI-451 (TIC257605131, GaiaDR24844691297067063424). TOI-451 is a member of the 120Myr old Pisces-Eridanus stream (Psc-Eri). We confirm membership in the stream with its kinematics, its lithium abundance, and the rotation and UV excesses of both TOI451 and its wide-binary companion, TOI-451B (itself likely an M-dwarf binary). We identified three candidate planets transiting in the Transiting Exoplanet Survey Satellite data and followed up the signals with photometry from Spitzer and ground-based telescopes. The system comprises three validated planets at periods of 1.9, 9.2, and 16days, with radii of 1.9, 3.1, and 4.1 R, respectively. The host star is near-solar mass with V=11.0 and H=9.3 and displays an infrared excess indicative of a debris disk. The planets offer excellent prospects for transmission spectroscopy with the Hubble Space Telescope and the James Webb Space Telescope, providing the opportunity to study planetary atmospheres that may still be in the process of evolving.
- ID:
- ivo://CDS.VizieR/J/ApJ/891/58
- Title:
- TIC star exposure times for JWST, LUVOIR and OST
- Short Name:
- J/ApJ/891/58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The search for water-rich Earth-sized exoplanets around low-mass stars is rapidly gaining attention because they represent the best opportunity to characterize habitable planets in the near future. Understanding the atmospheres of these planets and determining the optimal strategy for characterizing them through transmission spectroscopy with our upcoming instrumentation is essential in order to constrain their environments. For this study, we present simulated transmission spectra of tidally locked Earth-sized ocean-covered planets around late-M to mid-K stellar spectral types, utilizing the results of general circulation models previously published by Kopparapu+ (2017ApJ...845....5K) as inputs for our radiative transfer calculations performed using NASA's Planetary Spectrum Generator (psg.gsfc.nasa.gov). We identify trends in the depth of H2O spectral features as a function of planet surface temperature and rotation rate. These trends allow us to calculate the exposure times necessary to detect water vapor in the atmospheres of aquaplanets through transmission spectroscopy with the upcoming James Webb Space Telescope (JWST) as well as several future flagship space telescope concepts under consideration (the Large UV Optical Infrared Surveyor (LUVOIR) and the Origins Space Telescope (OST)) for a target list constructed from the Transiting Exoplanet Survey Satellite (TESS) Input Catalog (TIC). Our calculations reveal that transmission spectra for water-rich Earth-sized planets around low-mass stars will be dominated by clouds, with spectral features <20ppm, and only a small subset of TIC stars would allow for the characterization of an ocean planet in the habitable zone. We thus present a careful prioritization of targets that are most amenable to follow-up characterizations with next-generation instrumentation, in order to assist the community in efficiently utilizing precious telescope time.
- ID:
- ivo://CDS.VizieR/J/AJ/160/22
- Title:
- TOI-1235 Radial velocities & optical spectroscopy
- Short Name:
- J/AJ/160/22
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Small planets on close-in orbits tend to exhibit envelope mass fractions of either effectively zero or up to a few percent depending on their size and orbital period. Models of thermally driven atmospheric mass loss and of terrestrial planet formation in a gas-poor environment make distinct predictions regarding the location of this rocky/nonrocky transition in period-radius space. Here we present the confirmation of TOI-1235b (P=3.44days, r_p_=1.738_-0.076_^+0.087^R_{Earth}_), a planet whose size and period are intermediate between the competing model predictions, thus making the system an important test case for emergence models of the rocky/nonrocky transition around early M dwarfs (R_s_=0.630{+/-}0.015R_{sun}_, M_s_=0.640{+/-}0.016M_{sun}_). We confirm the TESS planet discovery using reconnaissance spectroscopy, ground-based photometry, high- resolution imaging, and a set of 38 precise radial velocities (RVs) from HARPS-N and HIRES. We measure a planet mass of 6.91_-0.85_^+0.75^M_{Earth}_, which implies an iron core mass fraction of 20_-12_^+15^% in the absence of a gaseous envelope. The bulk composition of TOI-1235b is therefore consistent with being Earth-like, and we constrain an H/He envelope mass fraction to be <0.5% at 90% confidence. Our results are consistent with model predictions from thermally driven atmospheric mass loss but not with gas-poor formation, suggesting that the former class of processes remains efficient at sculpting close-in planets around early M dwarfs. Our RV analysis also reveals a strong periodicity close to the first harmonic of the photometrically determined stellar rotation period that we treat as stellar activity, despite other lines of evidence favoring a planetary origin (P=21.8_-0.8_^+0.9^days, m_p_sini=13.0_-5.3_^+3.8^M_{Earth}_) that cannot be firmly ruled out by our data.
- ID:
- ivo://CDS.VizieR/J/AJ/159/83
- Title:
- Transit analysis for the K2-25 system
- Short Name:
- J/AJ/159/83
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The abundance of planets with orbital periods of a few to tens of days suggests that exoplanets experience complex dynamical histories. Planets in young stellar clusters or associations have well-constrained ages and therefore provide an opportunity to explore the dynamical evolution of exoplanets. K2-25b is a Neptune-sized planet in an eccentric, 3.48day orbit around an M4.5 dwarf star in the Hyades cluster (650Myr). In order to investigate its non-zero eccentricity and tight orbit, we analyze transit timing variations (TTVs) which could reveal clues to the migration processes that may have acted on the planet. We obtain 12 nonconsecutive transits using the MEarth observatories and long-term photometric monitoring, which we combine with 10 transits from the Spitzer Space Telescope and 20 transits from K2. Tables of MEarth photometry accompany this work. We fit each transit lightcurve independently. We first investigate whether inhomogeneities on the stellar surface (such as spots or plages) are differentially affecting our transit observations. The measured transit depth does not vary significantly between transits, though we see some deviations from the fiducial transit model. We then looked for TTVs as evidence of a nontransiting perturber in the system. We find no evidence for >1M_{Earth}_ mass companions within a 2:1 period ratio, or for >5M_{Earth}_ mass planets within a 7:2 period ratio.
- ID:
- ivo://CDS.VizieR/J/ApJ/736/12
- Title:
- Transit light curves of GJ1214
- Short Name:
- J/ApJ/736/12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The super-Earth GJ1214b transits a nearby M dwarf that exhibits a 1% intrinsic variability in the near-infrared. Here, we analyze new observations to refine the physical properties of both the star and planet. We present three years of out-of-transit photometric monitoring of the stellar host GJ1214 from the MEarth Observatory and find the rotation period to be long, most likely an integer multiple of 53 days, suggesting low levels of magnetic activity and an old age for the system. We show that such variability will not pose significant problems to ongoing studies of the planet's atmosphere with transmission spectroscopy. We analyze two high-precision transit light curves from ESO's Very Large Telescope (VLT) along with seven others from the MEarth and Fred Lawrence Whipple Observatory 1.2m telescopes, finding physical parameters for the planet that are consistent with previous work. The VLT light curves show tentative evidence for spot occultations during transit. Using two years of MEarth light curves, we place limits on additional transiting planets around GJ1214 with periods out to the habitable zone of the system. We also improve upon the previous photographic V-band estimate for the star, finding V=14.71+/-0.03.
- ID:
- ivo://CDS.VizieR/J/AJ/162/167
- Title:
- Transits time of M-dwarf TOI-1749
- Short Name:
- J/AJ/162/167
- Date:
- 16 Mar 2022 11:43:00
- Publisher:
- CDS
- Description:
- We report the discovery of one super-Earth- (TOI-1749b) and two sub-Neptune-sized planets (TOI-1749c and TOI-1749d) transiting an early M dwarf at a distance of 100pc, which were first identified as planetary candidates using data from the TESS photometric survey. We have followed up this system from the ground by means of multiband transit photometry, adaptive optics imaging, and low-resolution spectroscopy, from which we have validated the planetary nature of the candidates. We find that TOI-1749b, c, and d have orbital periods of 2.39, 4.49, and 9.05days, and radii of 1.4, 2.1, and 2.5R{Earth}, respectively. We also place 95% confidence upper limits on the masses of 57, 14, and 15M{Earth} for TOI-1749b, c, and d, respectively, from transit timing variations. The periods, sizes, and tentative masses of these planets are in line with a scenario in which all three planets initially had a hydrogen envelope on top of a rocky core, and only the envelope of the innermost planet has been stripped away by photoevaporation and/or core-powered mass-loss mechanisms. These planets are similar to other planetary trios found around M dwarfs, such as TOI-175b,c,d and TOI-270b,c,d, in the sense that the outer pair has a period ratio within 1% of 2. Such a characteristic orbital configuration, in which an additional planet is located interior to a near 2:1 period-ratio pair, is relatively rare around FGK dwarfs.
- ID:
- ivo://CDS.VizieR/J/AJ/158/133
- Title:
- Transit timing and light curves for K2-146
- Short Name:
- J/AJ/158/133
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- K2-146 is a mid-M dwarf (M_*_=0.331+/-0.009 M_{sun}_; R_*_=0.330+/-0.010 R_{sun}_), observed in Campaigns 5, 16, and 18 of the K2 mission. In Campaign 5 data, a single planet was discovered with an orbital period of 2.6 days and large transit timing variations due to an unknown perturber. Here, we analyze data from Campaigns 16 and 18, detecting the transits of a second planet, c, with an orbital period of 4.0 days, librating in a 3:2 resonance with planet b. Large, anticorrelated timing variations of both planets exist due to their resonant perturbations. The planets have a mutual inclination of 2.40{deg}+/-0.25{deg}, which torqued planet c more closely into our line of sight. Planet c was grazing in Campaign 5 and thus missed in previous searches; it is fully transiting in Campaigns 16 and 18, and its transit depth is three times larger. We improve the stellar properties using data from Gaia DR2 (Cat. I/345), and use dynamical fits to find that both planets are sub-Neptunes: their masses are 5.77+/-0.18 and 7.50+/-0.23 M_{Earth}_, and their radii are 2.04+/-0.06 and 2.19+/-0.07 R_{Earth}_, respectively. These mass constraints set the precision record for small exoplanets (a few gas giants have comparable relative precision). These planets lie in the photoevaporation valley when viewed in Radius-Period space, but due to the low-luminosity M-dwarf host star, they lie among the atmosphere-bearing planets when viewed in Radius-Irradiation space. This, along with their densities being 60-80% that of Earth, suggests that they may both have retained a substantial gaseous envelope.
- ID:
- ivo://CDS.VizieR/J/A+A/650/A138
- Title:
- TRAPPIST-1 analogue stars TESS light curves
- Short Name:
- J/A+A/650/A138
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- As more exoplanets are being discovered around ultracool dwarfs, understanding their magnetic activity - and the implications for habitability - is of prime importance. To find stellar flares and photometric signatures related to starspots, continuous monitoring is necessary, which can be achieved with spaceborn observatories like the Transiting Exoplanet Survey Satellite (TESS). We present an analysis of TRAPPIST-1 like ultracool dwarfs with TESS full- frame image photometry from the first two years of the primary mission. A volume-limited sample up to 50pc is constructed consisting of 339 stars closer than 0.5mag to TRAPPIST-1 on the Gaia colour-magnitude diagram. The 30-min cadence TESS light curves of 248 stars were analysed, searching for flares and rotational modulation caused by starspots. The composite flare frequency distribution of the 94 identified flares shows a power law index similar to TRAPPIST-1, and contains flares up to E_TESS_=3*10^33^erg. Rotational periods shorter than 5 days were determined for 42 stars, sampling the regime of fast rotators. The ages of 88 stars from the sample were estimated using kinematic information. A weak correlation between rotational period and age is observed, which is consistent with magnetic braking.
- ID:
- ivo://CDS.VizieR/J/MNRAS/497/3790
- Title:
- TRAPPIST-South UCD Transit Survey
- Short Name:
- J/MNRAS/497/3790
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We conducted a global analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey - a prototype of the SPECULOOS transit search conducted with the TRAPPIST-South robotic telescope in Chile from 2011 to 2017 - to estimate the occurrence rate of close-in planets such as TRAPPIST-1b orbiting ultra-cool dwarfs. For this purpose, the photometric data of 40 nearby ultra-cool dwarfs were reanalysed in a self-consistent and fully automated manner starting from the raw images. The pipeline developed specifically for this task generates differential light curves, removes non-planetary photometric features and stellar variability, and searches for transits. It identifies the transits of TRAPPIST-1b and TRAPPIST-1c without any human intervention. To test the pipeline and the potential output of similar surveys, we injected planetary transits into the light curves on a star-by-star basis and tested whether the pipeline is able to detect them. The achieved photometric precision enables us to identify Earth-sized planets orbiting ultra-cool dwarfs as validated by the injection tests. Our planet-injection simulation further suggests a lower limit of 10 per cent on the occurrence rate of planets similar to TRAPPIST-1b with a radius between 1 and 1.3 R_{Earth}_ and the orbital period between 1.4 and 1.8d.