- ID:
- ivo://CDS.VizieR/J/AJ/156/220
- Title:
- V, R and I light curves of 4 new low-mass M-type EBs
- Short Name:
- J/AJ/156/220
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We performed multicolor photometric and spectroscopic observations of four new low-mass M-type eclipsing binaries (HAT 225-03429, CRTS J085623.0+282620, CRTS J110302.4+201611, 2MASS J16344899+3716423) in 2017. We obtained new VRI light curves and minimum times of these four systems. Based on our minimum times, we updated the orbital periods and the linear ephemerides using the least squares method. We analyzed these four systems using the Wilson-Devinney program, and obtained the orbital and starspot parameters. The results of our analysis of the light curves indicate that HAT 225-03429 and CRTS J085623.0+282620 are detached eclipsing binaries, CRTS J110302.4+201611 is a semi-detached eclipsing binary, and 2MASS J16344899+3716423 is a contact binary. We performed LAMOST spectroscopic studies of chromospheric activity indicators (H{alpha}, H{beta}, H{gamma}, H{delta}, and Ca II H&K lines) for these four systems for the first time. We first determined their spectral types and calculated the equivalent widths of their chromospheric active indicators. These indicators show that the four low-mass M-type eclipsing binaries are active. Furthermore, the radii of these stars are notably larger than model predictions for their masses, except for the secondary component of HAT 225-03429 and the primary component of CRTS J110302.4+201611.
« Previous |
271 - 279 of 279
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/154/118
- Title:
- WD+dMs from the SUPERBLINK proper motion survey
- Short Name:
- J/AJ/154/118
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV-optical-IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use H{alpha} chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population.
273. WDMS from LAMOST DR1
- ID:
- ivo://CDS.VizieR/J/A+A/570/A107
- Title:
- WDMS from LAMOST DR1
- Short Name:
- J/A+A/570/A107
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- White dwarf-main sequence (WDMS) binaries are used to study several different important open problems in modern astrophysics. The Sloan Digital Sky Survey (SDSS) identified the largest catalogue of WDMS binaries currently known. However, this sample is seriously affected by selection effects and the population of systems containing cool white dwarfs and early-type companions is under-represented. Here we search for WDMS binaries within the spectroscopic data release 1 of the LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope) survey. LAMOST and SDSS follow different target selection algorithms. Hence, LAMOST WDMS binaries may be drawn from a different parent population and thus help in overcoming the selection effects incorporated by SDSS on the current observed population. We develop a fast and efficient routine based on the wavelet transform to identify LAMOST WDMS binaries containing a DA white dwarf and a M dwarf companion, and apply a decomposition/fitting routine to their LAMOST spectra to estimate their distances and measure their stellar parameters, namely the white dwarf effective temperatures, surface gravities and masses, and the secondary star spectral types. We identify 121 LAMOST WDMS binaries, 80 of which are new discoveries, and estimate the sample to be about 90 per cent complete. The LAMOST and SDSS WDMS binaries are found to be statistically different. However, this result is not due to the different target selection criteria of both surveys, but likely a simple consequence of the different observing conditions. Thus, the LAMOST population is found at considerably shorter distances (50-450pc) and is dominated by systems containing early-type companions and hot white dwarfs. Even though WDMS binaries containing cool white dwarfs are also missed by the LAMOST survey, the LAMOST WDMS binary sample dominated by systems containing early-type companions is an important addition to the current known spectroscopic catalogue. Future LAMOST observations however are required to increase the small number of LAMOST WDMS binaries.
- ID:
- ivo://CDS.VizieR/J/MNRAS/484/5362
- Title:
- White dwarf+M dwarf binaries radial velocities
- Short Name:
- J/MNRAS/484/5362
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a radial velocity survey of 20 white dwarf plus M dwarf binaries selected as a follow up to a Hubble Space Telescope study that aimed to spatially resolve suspected binaries. Our candidates are taken from the list of targets that were spatially unresolved with Hubble. We have determined the orbital periods for 16 of these compact binary candidates. The period distribution ranges from 0.14 to 9.16d and peaks near 0.6d. The original sample therefore contains two sets of binaries, wide orbits (~100-1000au) and close orbits (~1-10au), with no systems found in the ~10-100au. This observational evidence confirms the bimodal distribution predicted by population models and is also similar to results obtained in previous studies. We find no binary periods in the months to years range, supporting the post common envelope evolution scenario. One of our targets, WD 1504+546, was discovered to be an eclipsing binary with a period of 0.93d.
- ID:
- ivo://CDS.VizieR/J/ApJ/823/59
- Title:
- WISE and 2MASS photometry of M giant stars
- Short Name:
- J/ApJ/823/59
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using a spectroscopically confirmed sample of M giants, M dwarfs, and quasars from the LAMOST survey, we assess how well Wide-field Infrared Survey Explorer (WISE) and Two Micron All Sky Survey color cuts can be used to select M giant stars. The WISE bands are very efficient at separating M giants from M dwarfs, and we present a simple classification that can produce a clean and relatively complete sample of M giants. We derive a new photometric relation to estimate the metallicity for M giants, calibrated using data from the APOGEE survey. We find a strong correlation between the (W1-W2) color and [M/H], where almost all of the scatter is due to photometric uncertainties. We show that previous photometric distance relations, which are mostly based on stellar models, may be biased and devise a new empirical distance relation, investigating trends with metallicity and star formation history. Given these relations, we investigate the properties of M giants in the Sagittarius stream. The offset in the orbital plane between the leading and trailing tails is reproduced, and by identifying distant M giants in the direction of the Galactic anticenter, we confirm that the previously detected debris in the outer halo is the apocenter of the trailing tail. We also find tentative evidence supporting an existing overdensity near the leading tail in the northern Galactic hemisphere, possibly an extension to the trailing tail (so-called Branch C). We have measured the metallicity distribution along the stream, finding a clear metallicity offset between the leading and trailing tails, in agreement with models for the stream formation. We include an online table of M giants to facilitate further studies.
- ID:
- ivo://CDS.VizieR/J/ApJ/699/649
- Title:
- Young M dwarfs within 25pc. I.
- Short Name:
- J/ApJ/699/649
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have completed a high-resolution (R~60000) optical spectroscopic survey of 185 nearby M dwarfs identified using ROSAT data to select active, young objects with fractional X-ray luminosities comparable to or greater than Pleiades members. Our targets are drawn from the "NStars" 20pc census and the "Moving-M" sample with distances determined from parallaxes or spectrophotometric relations. We limited our sample to 25pc from the Sun, prior to correcting for pre-main-sequence overluminosity or binarity. Nearly half of the resulting M dwarfs are not present in the Gliese catalog and have no previously published spectral types. We identified 30 spectroscopic binaries (SBs) from the sample, which have strong X-ray emission due to tidal spin-up rather than youth.
- ID:
- ivo://CDS.VizieR/J/ApJ/762/88
- Title:
- Young stellar kinematic group candidate members
- Short Name:
- J/ApJ/762/88
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new method based on a Bayesian analysis to identify new members of nearby young kinematic groups. The analysis minimally takes into account the position, proper motion, magnitude, and color of a star, but other observables can be readily added (e.g., radial velocity, distance). We use this method to find new young low-mass stars in the {beta} Pictoris and AB Doradus moving groups and in the TW Hydrae, Tucana-Horologium, Columba, Carina, and Argus associations. Starting from a sample of 758 mid-K to mid-M (K5V-M5V) stars showing youth indicators such as H{alpha} and X-ray emission, our analysis yields 214 new highly probable low-mass members of the kinematic groups analyzed. One is in TW Hydrae, 37 in {beta} Pictoris, 17 in Tucana-Horologium, 20 in Columba, 6 in Carina, 50 in Argus, 32 in AB Doradus, and the remaining 51 candidates are likely young but have an ambiguous membership to more than one association. The false alarm rate for new candidates is estimated to be 5% for {beta} Pictoris and TW Hydrae, 10% for Tucana-Horologium, Columba, Carina, and Argus, and 14% for AB Doradus. Our analysis confirms the membership of 58 stars proposed in the literature. Firm membership confirmation of our new candidates will require measurement of their radial velocity (predicted by our analysis), parallax, and lithium 6708{AA} equivalent width. We have initiated these follow-up observations for a number of candidates, and we have identified two stars (2MASSJ01112542+1526214, 2MASSJ05241914-1601153) as very strong candidate members of the {beta} Pictoris moving group and one strong candidate member (2MASSJ05332558-5117131) of the Tucana-Horologium association; these three stars have radial velocity measurements confirming their membership and lithium detections consistent with young age.
- ID:
- ivo://CDS.VizieR/J/ApJ/801/79
- Title:
- 10yr of GJ176 radial velocities & VR photometry
- Short Name:
- J/ApJ/801/79
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an in-depth analysis of stellar activity and its effects on radial velocity (RV) for the M2 dwarf GJ 176 based on spectra taken over 10yr from the High Resolution Spectrograph on the Hobby-Eberly Telescope. These data are supplemented with spectra from previous observations with the HIRES and HARPS spectrographs, and V- and R-band photometry taken over six years at the Dyer and Fairborn observatories. Previous studies of GJ 176 revealed a super-Earth exoplanet in an 8.8-day orbit. However, the velocities of this star are also known to be contaminated by activity, particularly at the 39-day stellar rotation period. We have examined the magnetic activity of GJ 176 using the sodium I D lines, which have been shown to be a sensitive activity tracer in cool stars. In addition to rotational modulation, we see evidence of a long-term trend in our Na I D index, which may be part of a long-period activity cycle. The sodium index is well correlated with our RVs, and we show that this activity trend drives a corresponding slope in RV. Interestingly, the rotation signal remains in phase in photometry, but not in the spectral activity indicators. We interpret this phenomenon as the result of one or more large spot complexes or active regions which dominate the photometric variability, while the spectral indices are driven by the overall magnetic activity across the stellar surface. In light of these results, we discuss the potential for correcting activity signals in the RVs of M dwarfs.
- ID:
- ivo://CDS.VizieR/J/A+A/636/A119
- Title:
- YZ Ceti CARMENES and HARPS radial velocity curve
- Short Name:
- J/A+A/636/A119
- Date:
- 25 Oct 2021 00:44:17
- Publisher:
- CDS
- Description:
- The nearby ultra-compact multiplanetary system YZ Ceti consists of at least three planets, and a fourth tentative signal. The orbital period of each planet is the subject of discussion in the literature due to strong aliasing in the radial velocity data. The stellar activity of this M dwarf also hampers significantly the derivation of the planetary parameters. With an additional 229 radial velocity measurements obtained since the discovery publication, we reanalyze the YZ Ceti system and resolve the alias issues. We use model comparison in the framework of Bayesian statistics and periodogram simulations based on a method by Dawson and Fabrycky to resolve the aliases. We discuss additional signals in the RV data, and derive the planetary parameters by simultaneously modeling the stellar activity with a Gaussian process regression model. To constrain the planetary parameters further we apply a stability analysis on our ensemble of Keplerian fits. We find no evidence for a fourth possible companion. We resolve the aliases: the three planets orbit the star with periods of 2.02d, 3.06d, and 4.66d. We also investigate an effect of the stellar rotational signal on the derivation of the planetary parameters, in particular the eccentricity of the innermost planet. Using photometry we determine the stellar rotational period to be close to 68d and we also detect this signal in the residuals of a three-planet fit to the RV data and the spectral activity indicators. From our stability analysis we derive a lower limit on the inclination of the system with the assumption of coplanar orbits which is i_min_=0.9deg. From the absence of a transit event with TESS, we derive an upper limit of the inclination of i_max_=87.43deg. YZ Ceti is a prime example of a system where strong aliasing hindered the determination of the orbital periods of exoplanets. Additionally, stellar activity influences the derivation of planetary parameters and modeling them correctly is important for the reliable estimation of the orbital parameters in this specific compact system. Stability considerations then allow additional constraints to be placed on the planetary parameters.