- ID:
- ivo://CDS.VizieR/J/ApJS/177/551
- Title:
- Spitzer c2d survey of Lupus dark clouds
- Short Name:
- J/ApJS/177/551
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present c2d Spitzer IRAC observations of the Lupus I, III, and IV dark clouds and discuss them in combination with optical, near-infrared, and c2d MIPS data. With the Spitzer data, the new sample contains 159 stars, 4 times larger than the previous one. It is dominated by low- and very low mass stars, and it is complete down to M~0.1M_{sun}_. We find 30%-40% binaries with separations between 100 and 2000AU with no apparent effect on the disk properties of the members. A large majority of the objects are Class II or III objects, with only 20(12%) Class I or flat-spectrum sources. The disk sample is complete down to "debris"-like systems in stars as small as M~0.2M_{sun}_ and includes substellar objects with larger IR excesses. The disk fraction in Lupus is 70%-80%, consistent with an age of 1-2Myr. However, the young population contains 20% optically thick accretion disks and 40% relatively less flared disks. A growing variety of inner disk structures is found for larger inner disk clearings for equal disk masses.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/767/147
- Title:
- Spitzer-IRAC photometry of jets in Vela-D
- Short Name:
- J/ApJ/767/147
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a survey of H_2_ jets from young protostars in the Vela-D molecular cloud (VMR-D), based on Spitzer-IRAC data between 3.6 {mu}m and 8.0 {mu}m. Our search has led to the identification of 15 jets (two new discoveries) and about 70 well-aligned knots within 1.2 deg^2^. We compare the Infrared Array Camera (IRAC) maps with observations of the H_2_ 1-0 S(1) line at 2.12 {mu}m, with a Spitzer-MIPS map at 24 {mu}m and 70 {mu}m, and with a map of the dust continuum emission at 1.2 mm. From such a comparison, we find a tight association between molecular jets and dust peaks. The jet candidate exciting sources have been searched for in the published catalog of the young stellar objects of VMR-D. In particular, we searched for all the sources of Class II or (preferentially) earlier which are located close to the jet center and aligned with it. Furthermore, the association between jet and exciting source was validated by estimating the differential extinction between the jet opposite lobes. We are able to find a best-candidate exciting source in all but two jets, for which two alternative candidates are given. Four exciting sources are not (or very barely) observed at wavelengths shorter than 24 {mu}m, suggesting that they are very young protostars. Three of them are also associated with the most compact jets (projected length<~0.1 pc). The exciting source spectral energy distributions (SEDs) have been constructed and modeled by means of all the available photometric data between 1.2 {mu}m and 1.2 mm. From SEDs fits, we derive the main source parameters, which indicate that most of them are low-mass protostars. A significant correlation is found between the projected jet length and the [24]-[70] color, which is consistent with an evolutionary scenario according to which shorter jets are associated with younger sources. A rough correlation is found between IRAC line cooling and exciting source bolometric luminosity, in agreement with the previous literature. The emerging trend suggests that mass loss and mass accretion are tightly related phenomena and that both decrease with time.
563. Spitzer IRDCs
- ID:
- ivo://CDS.VizieR/J/ApJ/698/324
- Title:
- Spitzer IRDCs
- Short Name:
- J/ApJ/698/324
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have conducted a survey of a sample of infrared-dark clouds (IRDCs) with the Spitzer Space Telescope in order to explore their mass distribution. We present a method for tracing mass using dust absorption against the bright Galactic background at 8um. The IRDCs in this sample are comprised of tens of clumps, ranging in sizes from 0.02 to 0.3pc in diameter and masses from 0.5 to a few 10^3^M_{sun}_, the broadest dynamic range in any clump mass spectrum study to date.
- ID:
- ivo://CDS.VizieR/J/ApJ/762/128
- Title:
- Spitzer/IRS disk parameters in Serpens
- Short Name:
- J/ApJ/762/128
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Spectral energy distributions are presented for 94 young stars surrounded by disks in the Serpens Molecular Cloud, based on photometry and Spitzer/IRS spectra. Most of the stars have spectroscopically determined spectral types. Taking a distance to the cloud of 415pc rather than 259pc, the distribution of ages is shifted to lower values, in the 1-3Myr range, with a tail up to 10Myr. The mass distribution spans 0.2-1.2M_{sun}_, with median mass of 0.7M_{sun}_. The distribution of fractional disk luminosities in Serpens resembles that of the young Taurus Molecular Cloud, with most disks consistent with optically thick, passively irradiated disks in a variety of disk geometries (L_disk_/L_star_~0.1). In contrast, the distributions for the older Upper Scorpius and {eta} Chamaeleontis clusters are dominated by optically thin lower luminosity disks (L_disk_/L_star_~0.02). This evolution in fractional disk luminosities is concurrent with that of disk fractions: with time disks become fainter and the disk fractions decrease. The actively accreting and non-accreting stars (based on H{alpha} data) in Serpens show very similar distributions in fractional disk luminosities, differing only in the brighter tail dominated by strongly accreting stars. In contrast with a sample of Herbig Ae/Be stars, the T Tauri stars in Serpens do not have a clear separation in fractional disk luminosities for different disk geometries: both flared and flat disks present wider, overlapping distributions. This result is consistent with previous suggestions of a faster evolution for disks around Herbig Ae/Be stars. Furthermore, the results for the mineralogy of the dust in the disk surface (grain sizes, temperatures and crystallinity fractions, as derived from Spitzer/IRS spectra) do not show any correlation to either stellar and disk characteristics or mean cluster age in the 1-10Myr range probed here. A possible explanation for the lack of correlation is that the processes affecting the dust within disks have short timescales, happening repeatedly, making it difficult to distinguish long-lasting evolutionary effects.
- ID:
- ivo://CDS.VizieR/J/AJ/144/31
- Title:
- Spitzer+2MASS photometry of protostar candidates
- Short Name:
- J/AJ/144/31
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24{mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24{mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1L_{sun}_ and show a tail extending toward luminosities above 100L_{sun}_. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1L_{sun}_. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those predicted by models and find that our observed luminosity functions are best matched by models that invoke competitive accretion, although we do not find strong agreement between the high-mass SF clouds and any of the models.
- ID:
- ivo://CDS.VizieR/J/A+A/469/575
- Title:
- Spitzer mid-IR spectra of 3 molecular clouds
- Short Name:
- J/A+A/469/575
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This work was conducted as part of the SPECPDR program, dedicated to the study of very small particles and astrochemistry, in Photo-Dissociation Regions (PDRs). We present the analysis of the mid-IR spectro-imagery observations of Ced 201, NCG 7023 East and North-West and rho Ophiuchi West filament. Using the data from all four modules of the InfraRed Spectrograph onboard the Spitzer Space Telescope, we produced a spectral cube ranging from 5 to 35{mu}m, for each one of the observed PDRs. The resulting cubes were analysed using Blind Signal Separation methods (NMF and FastICA).
- ID:
- ivo://CDS.VizieR/J/ApJ/743/39
- Title:
- Spitzer observations of W3 molecular cloud
- Short Name:
- J/ApJ/743/39
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this work, we have carried out an in-depth analysis of the young stellar content in the W3 giant molecular cloud (GMC). The young stellar object (YSO) population was identified and classified in the Infrared Array Camera/Multiband Imaging Photometer color-magnitude space according to the "Class" scheme and compared to other classifications based on intrinsic properties. Class 0/I and II candidates were also compared to low-/intermediate-mass pre-main-sequence (PMS) stars selected through their colors and magnitudes in the Two Micron All Sky Survey. We find that a reliable color/magnitude selection of low-mass PMS stars in the infrared requires prior knowledge of the protostar population, while intermediate-mass objects can be more reliably identified. By means of the minimum spanning tree algorithm and our YSO spatial distribution and age maps, we investigated the YSO groups and the star formation history in W3.
- ID:
- ivo://CDS.VizieR/J/ApJ/654/338
- Title:
- Spitzer photometry in W3 molecular cloud
- Short Name:
- J/ApJ/654/338
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new images of the giant molecular cloud W3 obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope. The images encompass the star forming regions W3 Main, W3(OH), and a region that we refer to as the Central Cluster, which encloses the emission nebula IC 1795. We present a star count analysis of the point sources detected in W3. The star count analysis shows that the stellar population of the Central Cluster, when compared to that in the background, contains an over density of sources. The Central Cluster also contains an excess of sources with colors consistent with Class II young stellar objects (YSOs). An analysis of the color-color diagrams also reveals a large number of Class II YSOs in the Central Cluster. Our results suggest that an earlier epoch of star formation created the Central Cluster, created a cavity, and triggered the active star formation in the W3 Main and W3(OH) regions. We also detect a new outflow and its candidate exciting star.
- ID:
- ivo://CDS.VizieR/J/AJ/144/192
- Title:
- Spitzer survey of Orion A and B. I. YSO catalog
- Short Name:
- J/AJ/144/192
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a survey of the Orion A and B molecular clouds undertaken with the IRAC and MIPS instruments on board Spitzer. In total, five distinct fields were mapped, covering 9deg^2^ in five mid-IR bands spanning 3-24{mu}m. The survey includes the Orion Nebula Cluster, the Lynds 1641, 1630, and 1622 dark clouds, and the NGC 2023, 2024, 2068, and 2071 nebulae. These data are merged with the Two Micron All Sky Survey point source catalog to generate a catalog of eight-band photometry. We identify 3479 dusty young stellar objects (YSOs) in the Orion molecular clouds by searching for point sources with mid-IR colors indicative of reprocessed light from dusty disks or infalling envelopes. The YSOs are subsequently classified on the basis of their mid-IR colors and their spatial distributions are presented. We classify 2991 of the YSOs as pre-main-sequence stars with disks and 488 as likely protostars. Most of the sources were observed with IRAC in two to three epochs over six months; we search for variability between the epochs by looking for correlated variability in the 3.6 and 4.5{mu}m bands. We find that 50% of the dusty YSOs show variability. The variations are typically small (~0.2mag) with the protostars showing a higher incidence of variability and larger variations. The observed correlations between the 3.6, 4.5, 5.8, and 8{mu}m variability suggests that we are observing variations in the heating of the inner disk due to changes in the accretion luminosity or rotating accretion hot spots.
- ID:
- ivo://CDS.VizieR/J/ApJ/683/822
- Title:
- Star formation in Ophiuchus and Perseus II.
- Short Name:
- J/ApJ/683/822
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a census of the population of deeply embedded young stellar objects (YSOs) in the Ophiuchus molecular cloud complex based on a combination of Spitzer Space Telescope mid-infrared data from the "Cores to Disks" (c2d) legacy team and JCMT/SCUBA submillimeter maps from the COMPLETE team. We have applied a method developed for identifying embedded protostars in Perseus to these data sets and in this way construct a relatively unbiased sample of 27 candidate embedded protostars with envelopes more massive than our sensitivity limit (about 0.1M_{sun}_).