- ID:
- ivo://CDS.VizieR/J/MNRAS/448/946
- Title:
- Kepler eclipse timing variation analyses
- Short Name:
- J/MNRAS/448/946
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report eclipse timing variation analyses of 26 compact hierarchical triple stars comprised of an eccentric eclipsing ("inner") binary and a relatively close tertiary component found in the Kepler field. We simultaneously fit the primary and secondary O-C curves of each system for the light-traveltime effect (LTTE), as well as dynamical perturbations caused by the tertiary on different time-scales. For the first time, we include those contributions of three-body interactions which originate from the eccentric nature of the inner binary. These effects manifest themselves both on the period of the triple system, P_2_, and on the longer "apse-node" time-scale. We demonstrate that consideration of the dynamically forced rapid apsidal motion yields an efficient and independent tool for the determination of the binary orbit's eccentricity and orientation, as well as the 3D configuration of the triple. Modelling the forced apsidal motion also helps to resolve the degeneracy between the shapes of the LTTE and the dynamical delay terms on the P_2_ time-scale, due to the strong dependence of the apsidal motion period on the triple's mass ratio. This can lead to the independent determination of the binary and tertiary masses without the need for independent radial velocity measurements. Through the use of our analytic method for fitting O-C curves, we have obtained robust solutions for system parameters for the 10 most ideal triples of our sample, and only somewhat less robust, but yet acceptable, fits for the remaining systems. Finally, we study the results of our 26 system parameter fits via a set of distributions of various physically important parameters, including mutual inclination angle, and mass and period ratios.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/153/71
- Title:
- Kepler follow-up observation program. I. Imaging
- Short Name:
- J/AJ/153/71
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from high-resolution, optical to near-IR imaging of host stars of Kepler Objects of Interest (KOIs), identified in the original Kepler field. Part of the data were obtained under the Kepler imaging follow-up observation program over six years (2009-2015). Almost 90% of stars that are hosts to planet candidates or confirmed planets were observed. We combine measurements of companions to KOI host stars from different bands to create a comprehensive catalog of projected separations, position angles, and magnitude differences for all detected companion stars (some of which may not be bound). Our compilation includes 2297 companions around 1903 primary stars. From high-resolution imaging, we find that ~10% (~30%) of the observed stars have at least one companion detected within 1'' (4''). The true fraction of systems with close (<~4'') companions is larger than the observed one due to the limited sensitivities of the imaging data. We derive correction factors for planet radii caused by the dilution of the transit depth: assuming that planets orbit the primary stars or the brightest companion stars, the average correction factors are 1.06 and 3.09, respectively. The true effect of transit dilution lies in between these two cases and varies with each system. Applying these factors to planet radii decreases the number of KOI planets with radii smaller than 2R_{Earth}_ by ~2%-23% and thus affects planet occurrence rates. This effect will also be important for the yield of small planets from future transit missions such as TESS.
- ID:
- ivo://CDS.VizieR/J/ApJ/861/149
- Title:
- Kepler Follow-up Observation Program. II. Spectro.
- Short Name:
- J/ApJ/861/149
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from spectroscopic follow-up observations of stars identified in the Kepler field and carried out by teams of the Kepler Follow-up Observation Program. Two samples of stars were observed over 6yr (2009-2015): 614 standard stars (divided into "platinum" and "gold" categories) selected based on their asteroseismic detections and 2667 host stars of Kepler Objects of Interest (KOIs), most of them planet candidates. Four data analysis pipelines were used to derive stellar parameters for the observed stars. We compare the Teff, log(g), and [Fe/H] values derived for the same stars by different pipelines; from the average of the standard deviations of the differences in these parameter values, we derive error floors of ~100K, 0.2dex, and 0.1dex for Teff, log(g), and [Fe/H], respectively. Noticeable disagreements are seen mostly at the largest and smallest parameter values (e.g., in the giant star regime). Most of the log(g) values derived from spectra for the platinum stars agree on average within 0.025dex (but with a spread of 0.1-0.2dex) with the asteroseismic log(g) values. Compared to the Kepler Input Catalog (KIC), the spectroscopically derived stellar parameters agree within the uncertainties of the KIC but are more precise and thus an important contribution toward deriving more reliable planetary radii.
- ID:
- ivo://CDS.VizieR/J/ApJ/829/34
- Title:
- Kepler heartbeat star radial velocities
- Short Name:
- J/ApJ/829/34
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting near orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 22 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 days and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity-period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories.
- ID:
- ivo://CDS.VizieR/J/A+A/573/A124
- Title:
- Kepler-117 (KOI-209) transit-timing variations
- Short Name:
- J/A+A/573/A124
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- As part of our follow-up campaign of Kepler planets, we observed Kepler-117 with the SOPHIE spectrograph at the Observatoire de Haute-Provence. This F8-type star hosts two transiting planets in non-resonant orbits. The planets, Kepler-117 b and c, have orbital periods ~=18.8 and ~=50.8-days, and show transit-timing variations (TTVs) of several minutes. We performed a combined Markov chain Monte Carlo (MCMC) fit on transits, radial velocities, and stellar parameters to constrain the characteristics of the system. We included the fit of the TTVs in theMCMCby modeling them with dynamical simulations. In this way, consistent posterior distributions were drawn for the system parameters. According to our analysis, planets b and c have notably different masses (0.094+/-0.033 and 1.84+/-0.18M_J_) and low orbital eccentricities (0.0493+/-0.0062 and 0.0323+/-0.0033). The uncertainties on the derived parameters are strongly reduced if the fit of the TTVs is included in the combined MCMC. The TTVs allow measuring the mass of planet b, although its radial velocity amplitude is poorly constrained. Finally, we checked that the best solution is dynamically stable.
- ID:
- ivo://CDS.VizieR/J/A+A/626/A38
- Title:
- Kepler-17 long-term photometry
- Short Name:
- J/A+A/626/A38
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The study of young Sun-like stars is of fundamental importance to understand the magnetic activity and rotational evolution of the Sun. Space-borne photometry by the Kepler telescope provides unprecedented datasets to investigate these phenomena in Sun-like stars. We present a new analysis of the entire Kepler photometric time series of the moderately young Sun-like star Kepler-17 that is accompanied by a transiting hot Jupiter. We applied a maximum-entropy spot model to the long-cadence out-of-transit photometry of the target to derive maps of the starspot filling factor versus the longitude and the time. These maps are compared to the spots occulted during transits to validate our reconstruction and derive information on the latitudes of the starspots. We find two main active longitudes on the photosphere of Kepler-17, one of which has a lifetime of at least ~1400 days, although with a varying level of activity. The latitudinal differential rotation is of solar type, that is, with the equator rotating faster than the poles. We estimate a minimum relative amplitude {DELTA}{OMEGA}/{OMEGA} between ~0.08+/-0.05 and 0.14+/-0.05, our determination being affected by the finite lifetime of individual starspots and depending on the adopted spot model parameters. We find marginal evidence of a short-term intermittent activity cycle of ~48-days and an indication of a longer cycle of 400-600 days characterized by an equatorward migration of the mean latitude of the spots as in the Sun. The rotation of Kepler-17 is likely to be significantly affected by the tides raised by its massive close-by planet. We confirm the reliability of maximum-entropy spot models to map starspots in young active stars and characterize the activity and differential rotation of this young Sun-like planetary host.
- ID:
- ivo://CDS.VizieR/J/MNRAS/457/2877
- Title:
- Kepler M dwarf stars revised properties
- Short Name:
- J/MNRAS/457/2877
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We classified the reddest (r-J>2.2) stars observed by the NASA Kepler mission into main-sequence dwarf or evolved giant stars and determined the properties of 4216 M dwarfs based on a comparison of available photometry with that of nearby calibrator stars, as well as available proper motions and spectra. We revised the properties of candidate transiting planets using the stellar parameters, high-resolution imaging to identify companion stars, and, in the case of binaries, fitting light curves to identify the likely planet host. In 49 of 54 systems, we validated the primary as the host star. We inferred the intrinsic distribution of M dwarf planets using the method of iterative Monte Carlo simulation. We compared several models of planet orbital geometry and clustering and found that one where planets are exponentially distributed and almost precisely coplanar best describes the distribution of multiplanet systems. We determined that Kepler M dwarfs host an average of 2.2+/-0.3 planets with radii of 1-4R_{Earth}_ and orbital periods of 1.5-180d. The radius distribution peaks at ~1.2R_{Earth}_ and is essentially zero at 4R_{Earth}_, although we identify three giant planet candidates other than the previously confirmed Kepler-45b. There is suggestive but not significant evidence that the radius distribution varies with orbital period. The distribution with logarithmic orbital period is flat except for a decline for orbits less than a few days. 12 candidate planets, including two Jupiter-size objects, experience an irradiance below the threshold level for a runaway greenhouse on an Earth-like planet and are thus in a 'habitable zone'.
- ID:
- ivo://CDS.VizieR/J/A+A/624/A15
- Title:
- Kepler-411 mid-transit times
- Short Name:
- J/A+A/624/A15
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a detailed characterization of the Kepler-411 system (KOI 1781). This system was previously known to host two transiting planets: one with a period of 3 days (R=2.4R_{Earth}_; Kepler-411b) and one with a period of 7.8days (R=4.4R_{Earth}_; Kepler-411c), as well as a transiting planetary candidate with a 58-day period (R=3.3R_{Earth}_; KOI 1781.03) from Kepler photometry. Here, we combine Kepler photometry data and new transit timing variation (TTV) measurements from all the Kepler quarters with previous adaptive-optics imaging results, and dynamical simulations, in order to constrain the properties of the Kepler-411 system. From our analysis, we obtain masses of 25.6+/-2.6M_{Earth}_ for Kepler-411b and 26.4+/-5.9M_{Earth}_ for Kepler-411c, and we confirm the planetary nature of KOI 1781.03 with a mass of 15.2+/-5.1M_{Earth}_, hence the name Kepler-411d. Furthermore, by assuming near-coplanarity of the system (mutual inclination below 30{deg}), we discover a nontransiting planet, Kepler-411e, with a mass of 10.8+/-1.1M_{Earth}_ on a 31.5-day orbit, which has a strong dynamical interaction with Kepler-411d. With densities of 1.71+/-0.39g/cm^3^ and 2.32+/-0.83g/cm^3^, both Kepler-411c and Kepler-411d belong to the group of planets with a massive core and a significant fraction of volatiles. Although Kepler-411b has a sub-Neptune size, it belongs to the group of rocky planets.
- ID:
- ivo://CDS.VizieR/J/ApJ/774/L12
- Title:
- Kepler multiplanet systems analysis (Q1-Q8)
- Short Name:
- J/ApJ/774/L12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Many Kepler multiplanet systems have planet pairs near low-order, mean-motion resonances. In addition, many Kepler multiplanet systems have planets with orbital periods less than a few days. With the exception of Kepler-42, however, there are no examples of systems with both short orbital periods and nearby companion planets while our statistical analysis predicts ~17 such pairs. For orbital periods of the inner planet that are less than three days, the minimum period ratio of adjacent planet pairs follows the rough constraint P=P_2_/P_1_>~2.3(P_1_/day)^-2/3^ (equation (1)). This absence is not due to a lack of planets with short orbital periods. We also show a statistically significant excess of small, single-candidate systems with orbital periods below three days over the number of multiple candidate systems with similar periods--perhaps a small-planet counterpart to the hot Jupiters.
- ID:
- ivo://CDS.VizieR/J/ApJ/763/41
- Title:
- Kepler multiple-candidate systems radii
- Short Name:
- J/ApJ/763/41
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a study of the relative sizes of planets within the multiple-candidate systems discovered with the Kepler mission (Burke+, 2014, J/ApJS/210/29). We have compared the size of each planet to the size of every other planet within a given planetary system after correcting the sample for detection and geometric biases. We find that for planet pairs for which one or both objects are approximately Neptune-sized or larger, the larger planet is most often the planet with the longer period. No such size-location correlation is seen for pairs of planets when both planets are smaller than Neptune. Specifically, if at least one planet in a planet pair has a radius of >~3R_{oplus}_, 68%+/-6% of the planet pairs have the inner planet smaller than the outer planet, while no preferred sequential ordering of the planets is observed if both planets in a pair are smaller than <~3R_{oplus}_.