- ID:
- ivo://CDS.VizieR/VIII/89
- Title:
- Northern HI Parkes All Sky Survey Catalogue (HIPASS)
- Short Name:
- VIII/89
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Northern HIPASS catalogue (NHICAT) is the northern extension of the HIPASS catalogue, HICAT. This extension adds the sky area between the declination (Dec.) range of +2{deg}<DE<+25{deg}30' to HICAT's Dec. range of -90{deg}<DE<+2{deg}. HIPASS is a blind HI survey using the Parkes Radio Telescope covering 71 per cent of the sky (including this northern extension) and a heliocentric velocity range of -1280 to 12700km/s. The entire Virgo Cluster region has been observed in the Northern HIPASS. The galaxy catalogue, NHICAT, contains 1002 sources with v_hel_>300km/s. Sources with -300<v_hel_<300km/s were excluded to avoid contamination by Galactic emission. In total, the entire HIPASS survey has found 5317 galaxies identified purely by their HI content. The full galaxy catalogue is publicly available at http://hipass.aus-vo.org.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/891/28
- Title:
- N-rich field stars from LAMOST and APOGEE data
- Short Name:
- J/ApJ/891/28
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Interesting chemically peculiar field stars may reflect their stellar evolution history and their possible origin in a different environment from where they are found now; this is one of the most important research fields in Galactic archeology. To explore this further, we have used the CN-CH bands around 4000{AA} to identify N-rich metal-poor field stars in LAMOST DR3. Here we expand our N-rich, metal-poor field star sample to ~100 stars in LAMOST DR5, where 53 of them are newly found in this work. We investigate light elements of common stars between our sample and APOGEE DR14. While Mg, Al, and Si abundances generally agree with the hypothesis that N-rich metal-poor field stars come from enriched populations in globular clusters, it is still inconclusive for C, N, and O. After integrating the orbits of our N-rich field stars and a control sample of normal metal-poor field stars, we find that N-rich field stars have different orbital parameter distributions compared to the control sample-specifically, apocentric distances, maximum vertical amplitude (Zmax), orbital energy, and z-direction angular momentum (Lz). The orbital parameters of N-rich field stars indicate that most of them are inner-halo stars. The kinematics of N-rich field stars support their possible GC origin. The spatial and velocity distributions of our bona fide N-rich field star sample are important observational evidence to constrain simulations of the origin of these interesting objects.
- ID:
- ivo://CDS.VizieR/J/A+A/627/A153
- Title:
- NSVS 10653195 light and velocity curves
- Short Name:
- J/A+A/627/A153
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Low-mass stars in eclipsing binary systems show radii larger and effective temperatures lower than theoretical stellar models predict for isolated stars with the same masses. Eclipsing binaries with low-mass components are hard to find due to their low luminosity. As a consequence, the analysis of the known low-mass eclipsing systems is key to understand this behavior. We aim to investigate the mass-radius relation for low-mass stars and the cause of the deviation of the observed radii in low-mass detached eclipsing binary stars (LMDEB) from theoretical stellar models. We developed a physical model of the LMDEB system NSVS 10653195 to accurately measure the masses and radii of the components. We obtained several high-resolution spectra in order to fit a spectroscopic orbit. Standardized absolute photometry was obtained to measure reliable color indices and to measure the mean Teff of the system in out-of-eclipse phases. We observed and analyzed optical VRI and infrared JK band differential light-curves which were fitted using PHOEBE. A Markov-Chain Monte Carlo (MCMC) simulation near the solution found provides robust uncertainties for the fitted parameters. NSVS 10653195 is a detached eclipsing binary composed of two similar stars with masses of M1=0.6402+/-0.0052M_{sun}_ and M2=0.6511+/-0.0052M_{sun}_ and radii of R1=0.687^+0.017^_-0.024_R_{sun}_ and R2=0.672^+0.018^_-0.022_R_{sun}_. Spectral types were estimated to be K6V and K7V. These stars rotate in a circular orbit with an orbital inclination of i=86.22+/-0.61 degrees and a period of P=0.5607222(2)d. The distance to the system is estimated to be d=135.2^+7.6^_-7.9_pc, in excellent agreement with the value from Gaia. If solar metallicity were assumed, the age of the system would be older than log(age)~8 based on the M_bol_-logTeff diagram. NSVS 10653195 is composed of two oversized and active K stars. While their radii is above model predictions their Teff are in better agreement with models.
- ID:
- ivo://CDS.VizieR/J/A+A/624/A18
- Title:
- nu Oph radial velocity curve
- Short Name:
- J/A+A/624/A18
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present radial-velocity (RV) measurements for the K giant nu Oph (=HIP 88048, HD 163917, HR 6698), which reveal two brown dwarf companions with a period ratio close to 6:1. For our orbital analysis we use 150 precise RV measurements taken at the Lick Observatory between 2000 and 2011, and we combine them with RV data for this star available in the literature. Using a stellar mass of M=2.7M_{sun}_ for nu Oph and applying a self-consistent N-body model we estimate the minimum dynamical companion masses to be m_1_sini~22.2M_Jup_ and m_2_sini~24.7M_Jup_, with orbital periods P_1_~530d and P_2_~3185d.
- ID:
- ivo://CDS.VizieR/J/AJ/159/255
- Title:
- Observation & radial velocity of WASP-150 & WASP-176
- Short Name:
- J/AJ/159/255
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of two transiting exoplanets from the Wide Angle Search for Planets (WASP) survey, WASP-150b and WASP-176b. WASP-150b is an eccentric (e=0.38) hot Jupiter on a 5.6day orbit around a V=12.03, F8 main-sequence host. The host star has a mass and radius of 1.4M_{sun}_ and 1.7R_{sun}_ respectively. WASP-150b has a mass and radius of 8.5M_J_ and 1.1R_J_, leading to a large planetary bulk density of 6.4{rho}_J_. WASP-150b is found to be ~3Gyr old, well below its circularization timescale, supporting the eccentric nature of the planet. WASP-176b is a hot Jupiter planet on a 3.9day orbit around a V=12.01, F9 sub-giant host. The host star has a mass and radius of 1.3M{sun} and 1.9R{sun}. WASP-176b has a mass and radius of 0.86M_J_ and 1.5R_J_, respectively, leading to a planetary bulk density of 0.23{rho}_J_.
- ID:
- ivo://CDS.VizieR/J/AJ/159/233
- Title:
- Observations of binary stars with the DSSI. IX.
- Short Name:
- J/AJ/159/233
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report 370 measures of 170 components of binary and multiple-star systems, obtained from speckle imaging observations made with the Differential Speckle Survey Instrument (DSSI) at Lowell Observatory's Discovery Channel Telescope in 2015 through 2017. Of the systems studied, 147 are binary stars, 10 are seen as triple systems, and 1 quadruple system is measured. Seventy-six high-quality nondetections and 15 newly resolved components are presented in our observations. The uncertainty in relative astrometry appears to be similar to our previous work at Lowell, namely, linear measurement uncertainties of approximately 2mas, and the relative photometry appears to be uncertain at the 0.1-0.15mag level. Using these measures and those in the literature, we calculate six new visual orbits, including one for the Be star 66Oph and two combined spectroscopic-visual orbits. The latter two orbits, which are for HD22451 (YSC127) and HD185501 (YSC135), yield individual masses of the components at the level of 2% or better, and independent distance measures that in one case agrees with the value found in the Gaia DR2 and in the other disagrees at the 2{sigma} level. We find that HD22451 consists of an F6V+F7V pair with orbital period of 2401.1{+/-}3.2days and masses of 1.342{+/-}0.029 and 1.236{+/-}0.026M_{sun}_. For HD185501, both stars are G5 dwarfs that orbit one another with a period of 433.94{+/-}0.15days, and the masses are 0.898{+/-}0.012 and 0.876{+/-}0.012M_{sun}_. We discuss the details of both the new discoveries and the orbit objects.
- ID:
- ivo://CDS.VizieR/J/A+A/502/695
- Title:
- Observations of HD 80606 planetary system
- Short Name:
- J/A+A/502/695
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We recently reported the photometric and spectroscopic detection of the primary transit of the 111-day-period, eccentric extra-solar planet HD 80606b, at Observatoire de Haute-Provence, France. The whole egress of the primary transit and a section of its central part were observed, allowing the measurement of the planetary radius, and evidence for a spin-orbit misalignment through the observation of the Rossiter-McLaughlin anomaly. The ingress not having been observed for this long-duration transit, uncertainties remained in the parameters of the system. We present here a refined, combined analysis of our photometric and spectroscopic data, together with further published radial velocities, ground-based photometry, and Spitzer photometry around the secondary eclipse, as well as new photometric measurements of HD 80606 acquired at Mount Hopkins, Arizona, just before the beginning of the primary transit.
- ID:
- ivo://CDS.VizieR/J/AJ/159/267
- Title:
- Observations & radial velocity of HATS-71b
- Short Name:
- J/AJ/159/267
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of HATS-71b, a transiting gas giant planet on a P=3.7955day orbit around a G=15.35mag M3 dwarf star. HATS-71 is the coolest M dwarf star known to host a hot Jupiter. The loss of light during transits is 4.7%, more than in any other confirmed transiting planet system. The planet was identified as a candidate by the ground-based HATSouth transit survey. It was confirmed using ground-based photometry, spectroscopy, and imaging, as well as space-based photometry from the NASA Transiting Exoplanet Survey Satellite mission (TIC234523599). Combining all of these data, and utilizing Gaia DR2, we find that the planet has a radius of 1.024{+/-}0.018R_J_ and mass of 0.37{+/-}0.24M_J_ (95% confidence upper limit of <0.80M_J_), while the star has a mass of 0.4861{+/-}0.0060M_{sun}_ and a radius of 0.4783{+/-}0.0060R_{sun}_.
- ID:
- ivo://CDS.VizieR/J/A+A/615/A40
- Title:
- OB stars in N206 in the LMC
- Short Name:
- J/A+A/615/A40
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Context. Clusters or associations of early-type stars are often associated with a "superbubble" of hot gas. The formation of such superbubbles is caused by the feedback from massive stars. The complex N 206 in the Large Magellanic Cloud (LMC) exhibits a superbubble and a rich massive star population. Aims. Our goal is to perform quantitative spectral analyses of all massive stars associated with the N 206 superbubble in order to determine their stellar and wind parameters. We compare the superbubble energy budget to the stellar energy input and discuss the star formation history of the region. Methods. We observed the massive stars in the N 206 complex using the multi-object spectrograph FLAMES at ESO's Very Large Telescope (VLT). Available ultra-violet (UV) spectra from archives are also used. The spectral analysis is performed with Potsdam Wolf-Rayet (PoWR) model atmospheres by reproducing the observations with the synthetic spectra. Results. We present the stellar and wind parameters of the OB stars and the two Wolf-Rayet (WR) binaries in the N 206 complex. Twelve percent of the sample show Oe/Be type emission lines, although most of them appear to rotate far below critical. We found eight runaway stars based on their radial velocity. The wind-momentum luminosity relation of our OB sample is consistent with the expectations. The Hertzsprung-Russell diagram (HRD) of the OB stars reveals a large age spread (1-30Myr), suggesting different episodes of star formation in the complex. The youngest stars are concentrated in the inner part of the complex, while the older OB stars are scattered over outer regions. We derived the present day mass function for the entire N 206 complex as well as for the cluster NGC 2018. The total ionizing photon flux produced by all massive stars in the N 206 complex is Q_0_~=5x10^50^s^-1^, and the mechanical luminosity of their stellar winds amounts to L_mec_=1.7x10^38^erg/s. Three very massive Of stars are found to dominate the feedback among 164 OB stars in the sample. The two WR winds alone release about as much mechanical luminosity as the whole OB star sample. The cumulative mechanical feedback from all massive stellar winds is comparable to the combined mechanical energy of the supernova explosions that likely occurred in the complex. Accounting also for the WR wind and supernovae, the mechanical input over the last five Myr is ~=2.3x10^52^erg. Conclusions. The N206 complex in the LMC has undergone star formation episodes since more than 30Myr ago. From the spectral analyses of its massive star population, we derive a current star formation rate of 2.2x10^-3^M_{sun}_/yr. From the combined input of mechanical energy from all stellar winds, only a minor fraction is emitted in the form of X-rays. The corresponding input accumulated over a long time also exceeds the current energy content of the complex by more than a factor of five. The morphology of the complex suggests a leakage of hot gas from the superbubble.
- ID:
- ivo://CDS.VizieR/J/AJ/161/295
- Title:
- Obs. with Differential Speckle Survey Instrument. X.
- Short Name:
- J/AJ/161/295
- Date:
- 09 Mar 2022 22:00:00
- Publisher:
- CDS
- Description:
- This paper details speckle observations of binary stars taken at the Lowell Discovery Telescope, the WIYN telescope, and the Gemini telescopes between 2016 January and 2019 September. The observations taken at Gemini and Lowell were done with the Differential Speckle Survey Instrument (DSSI), and those done at WIYN were taken with the successor instrument to DSSI at that site, the NN-EXPLORE Exoplanet Star and Speckle Imager (NESSI). In total, we present 378 observations of 178 systems, and we show that the uncertainty in the measurement precision for the combined data set is ~2mas in separation, ~1{deg}-2{deg} in position angle depending on the separation, and ~0.1mag in magnitude difference. Together with data already in the literature, these new results permit 25 visual orbits and one spectroscopic- visual orbit to be calculated for the first time. In the case of the spectroscopic-visual analysis, which is done on the ternary star HD173093, we calculate masses with a precision of better than 1% for all three stars in that system. Twenty-one of the visual orbits calculated have a K-dwarf as the primary star; we add these to the known orbits of K-dwarf primary stars and discuss the basic orbital properties of these stars at this stage. Although incomplete, the data that exist so far indicate that binaries with K-dwarf primaries tend not to have low-eccentricity orbits at separations of one to a few tens of astronomical units, that is, on solar system scales.