We present results from a variability and proper motion (VPM) search for QSOs in the field around M3. The VPM search is demonstrated to be powerful technique for efficiently finding QSOs without major selection effects with regard to the spectral energy distribution. Remarkably, the properties of the VPM QSOs do not significantly differ from those of samples from more conventional optical search techniques. The lightcurves of the QSOs from the resulting sample provide an interesting data set for the statistical investigation of QSO long-term variability.
This paper reports the initial results of the Palomar Transit Grism Survey (PTGS). The PTGS was designed to produce a sample of z>2.7 quasars that were identified by well-defined selection criteria. The survey consists of six narrow (~8.5' wide) strips of sky; the total effective area is 61.47deg^2^. Low-resolution slitless spectra, covering the wavelength range from 4400 to 7500A, were obtained for approximately 600000 objects. The wavelength- and flux-calibrated spectra were searched for emission lines with an automatic software algorithm. A total to 1655 emission features in the grism data satisfied our signal-to-noise ratio and equivalent width selection criteria; subsequent slit spectroscopy of the candidates confirmed the existence of 1052 lines (928 different objects). Six groups of emission lines were detected in the survey: Lyman alpha+N V, C IV, C III], Mg II, Hbeta+[O III], and Halpha+[S II]. More than two-thirds of the candidates are low-redshift (z<0.45) emission-line galaxies; ninety objects are high-redshift quasars (z>2.7) detected via their Lyman alpha+N V emission lines. The survey contains three previously unknown quasars brighter than 17th magnitude; all three have redshifts of ~1.3. In this paper we present the observational properties of the survey, the algorithms used to select the emission-line candidates, and the catalog of emission-line objects.
We identify 885503 type 1 quasar candidates to i<~22 using the combination of optical and mid-IR photometry. Optical photometry is taken from the Sloan Digital Sky Survey-III: Baryon Oscillation Spectroscopic Survey (SDSS-III/BOSS), while mid-IR photometry comes from a combination of data from the Wide-field Infrared Survey Explorer (WISE) "AllWISE" data release and several large-area Spitzer Space Telescope fields. Selection is based on a Bayesian kernel density algorithm with a training sample of 157701 spectroscopically confirmed type 1 quasars with both optical and mid-IR data. Of the quasar candidates, 733713 lack spectroscopic confirmation (and 305623 are objects that we have not previously classified as photometric quasar candidates). These candidates include 7874 objects targeted as high-probability potential quasars with 3.5<z<5 (of which 6779 are new photometric candidates). Our algorithm is more complete to z>3.5 than the traditional mid-IR selection "wedges" and to 2.2<z<3.5 quasars than the SDSS-III/BOSS project. Number counts and luminosity function analysis suggest that the resulting catalog is relatively complete to known quasars and is identifying new high-z quasars at z>3. This catalog paves the way for luminosity-dependent clustering investigations of large numbers of faint, high-redshift quasars and for further machine-learning quasar selection using Spitzer and WISE data combined with other large-area optical imaging surveys.
A survey of quasar absorbers was conducted using the Infrared Astronomical Satellite (IRAS) database. Quasars with known intervening absorption-line systems and broad absorption line (BAL) QSOs were selected primarily from Junkkarinen et al. (1991ApJS...77..203J). Of the 570 quasars with IRAS data, 52 showed 3{sigma} or better detections in at least one band in SCANPI analysis. The origin of the IRAS flux could be from the absorption-line systems, other galaxies, or the quasar itself. The spectral energy distributions for quasars detected in the absorption-line sample and BAL QSOs were found to be redder than those of two control samples which suggests that some of the IRAS flux may arise in dust associated with the intervening galaxies. IRAS SUPERSCANPI processing was carried out for 77 quasars with known MgII absorption at Zabs<1 to investigate the ensemble far-infrared properties of these objects. SUPERSCANPI processing evaluates the median flux for many different positions on the sky, resulting in an improvement in the effective sensitivity. A control sample consisting of objects with no MgII absorption known at Zabs<1 but with the same distribution of absolute V-magnitude, Zem and radio-loud fraction for the background quasars was also processed. The MgII sample was detected at 3{sigma} or better in all four IRAS bands with a significantly larger flux than the control sample at 60{mu}m and 100{mu}m. If this far-infrared emission is from the absorber galaxies, then the far-infrared luminosity of the composite MgII absorber was found to be comparable to that of a starbursting galaxy, although such a high star-formation rate is inconsistent with the optical and near-infrared colors of low-redshift MgII systems. Four of the quasars with individual IRAS detections have intervening galaxies identified with the MgII absorption-lines. The spectral energy distributions of these galaxies imply far-infrared luminosities in excess of what Arp 220 would give at their redshifts. While all the external evidence suggests that the detection of far-infrared emission from the absorber sample may not be connected to the presence of the MgII absorber, we discuss future observations which may help explain our results.
We determine the number counts and z=0-5 luminosity function for a well-defined, homogeneous sample of quasars from the Sloan Digital Sky Survey (SDSS). We conservatively define the most uniform statistical sample possible, consisting of 15343 quasars within an effective area of 1622{deg}^2^ that was derived from a parent sample of 46420 spectroscopically confirmed broad-line quasars in the 5282{deg}^2^ of imaging data from SDSS Data Release 3. The sample extends from i=15 to 19.1 at z<~3 and to i=20.2 for z>~3.
The hosts of luminous z~2 quasars evolve into today's massive elliptical galaxies. Current theories predict that the circumgalactic medium (CGM) of these massive, dark matter halos (M_DM_~10^12.5^M_{sun}_) should be dominated by a T~10^7^K virialized plasma. We test this hypothesis with observations of 74 close-projected quasar pairs, using spectra of the background QSO to characterize the CGM of the foreground one. Surprisingly, our measurements reveal a cool (T~10^4^K), massive (M_CGM_>10^10^M_{sun}_), and metal-enriched (Z>~0.1Z_{sun}_) medium extending to at least the expected virial radius (r_vir_=160kpc). Furthermore, we conservatively estimate that the quasar CGM has a 64^+6^_-7_% covering fraction of optically thick gas (N_HI_>10^17.2^/cm^2^) within r_vir_; this covering factor is twice that of the contemporaneous Lyman break galaxy population. This unexpected reservoir of cool gas is rarely detected "down-the-barrel" to quasars, and hence it is likely that our background sight lines intercept gas that is shadowed from the quasar ionizing radiation by the same obscuring medium often invoked in models of active galactic nucleus unification. Because the high-z halos inhabited by quasars predate modern groups and clusters, these observations are also relevant to the formation and enrichment history of the intragroup/intracluster medium.
We present a new catalogue of ~2400 optically selected quasars with spectroscopic redshifts and X-ray observations from either Chandra or XMM-Newton. The sample can be used to investigate the non-linear relation between the UV and X-ray luminosity of quasars, and to build a Hubble diagram up to redshift z~7.5. We selected sources that are neither reddened by dust in the optical/UV nor obscured by gas in the X-rays, and whose X-ray fluxes are free from flux-limit related biases. After checking for any possible systematics, we confirm, in agreement with our previous works, that (i) the X-ray to UV relation provides distance estimates matching those from supernovae up to z~1.5, and (ii) its slope shows no redshift evolution up to z~5. We provide a full description of the methodology for testing cosmological models, further supporting a trend whereby the Hubble diagram of quasars is well reproduced by the standard flat LambdaCDM model up to z~1.5-2, but strong deviations emerge at higher redshifts. Since we have minimized all non-negligible systematic effects, and proven the stability of the Lx-Lo relation at high redshifts, we conclude that an evolution of the expansion rate of the Universe should be considered as a possible explanation for the observed deviation, rather than some systematic (redshift-dependent) effect associated with high-redshift quasars.
We present a catalog of 37842 quasars in the Sloan Digital Sky Survey (SDSS) Data Release 7, which have counterparts within 6" in the Wide-field Infrared Survey Explorer (WISE) Preliminary Data Release. The overall WISE detection rate of the SDSS quasars is 86.7%, and it decreases to less than 50.0% when the quasar magnitude is fainter than i=20.5. We derive the median color-redshift relations based on this SDSS-WISE quasar sample and apply them to estimate the photometric redshifts of the SDSS-WISE quasars. We find that by adding the WISE W1- and W2-band data to the SDSS photometry we can increase the photometric redshift reliability, defined as the percentage of sources with photometric and spectroscopic redshift difference less than 0.2, from 70.3% to 77.2%. We also obtain the samples of WISE-detected normal and late-type stars with SDSS spectroscopy, and present a criterion in the z-W1 versus g-z color-color diagram, z-W1>0.66(g-z)+2.01, to separate quasars from stars. With this criterion we can recover 98.6% of 3089 radio-detected SDSS-WISE quasars with redshifts less than four and overcome the difficulty in selecting quasars with redshifts between 2.2 and 3 from SDSS photometric data alone. We also suggest another criterion involving the WISE color only, W1-W2>0.57, to efficiently separate quasars with redshifts less than 3.2 from stars. In addition, we compile a catalog of 5614 SDSS quasars detected by both WISE and UKIDSS surveys and present their color-redshift relations in the optical and infrared bands. By using the SDSS ugriz, UKIDSS, YJHK, and WISE W1- and W2-band photometric data, we can efficiently select quasar candidates and increase the photometric redshift reliability up to 87.0%. We discuss the implications of our results on the future quasar surveys. An updated SDSS-WISE quasar catalog consisting of 101853 quasars with the recently released WISE all-sky data is also provided.
We explore the practical feasibility of active galactic nucleus (AGN) broadband reverberation mapping and present first results. We lay out and apply a rigorous approach for the stochastic reverberation mapping of unevenly sampled multi-broadband flux measurements, assuming that the broad-line region (BLR) line flux is contributing up to 15% in some bands, and is directly constrained by one spectroscopical epoch. The approach describes variations of the observed flux as the continuum, modeled as a stochastic Gaussian process, and emission line contribution, modeled as a scaled, smoothed, and delayed version of the continuum. This approach can be used not only to interpolate in time between measurements, but also to determine confidence limits on continuum-line emission delays. This approach is applied to Sloan Digital Sky Survey observations in Stripe 82 (S82), providing flux measurements that are precise to 2% at ~60 epochs over ~10 yr. The strong annual variations in the epoch sampling prove a serious limitation in practice. In addition, suitable redshift ranges must be identified where strong, broad emission lines contribute to one filter, but not to another. By generating and evaluating problem-specific mock data, we verify that S82-like data can constrain {tau}_delay_ for a simple transfer function model. In application to real data, we estimate {tau}_delay_ for 323 AGNs with 0.225<z<0.846, combining information for different objects through the ensemble-scaling relationships for BLR size and black hole mass. Our analysis tentatively indicates a 1.7 times larger BLR size of H{alpha} and Mg II compared to Kaspi et al. (2000ApJ...533..631K; 2007ApJ...659..997K) and Vestergaard (2002ApJ...571..733V; 2006ApJ...641..689V), but the seasonal data sampling casts doubt on the robustness of the inference.
Radial acceleration relation in CLASH galaxy clusters
Short Name:
J/ApJ/896/70
Date:
03 Dec 2021 13:12:15
Publisher:
CDS
Description:
The radial acceleration relation (RAR) in galaxies describes a tight empirical scaling law between the total acceleration g_tot_(r)=GM_tot_(<r)/r^2^ observed in galaxies and that expected from their baryonic mass g_bar_(r)=GM_bar_(<r)/r^2^, with a characteristic acceleration scale of g_{dagger}_~1.2x10^-10^m/s^2^. Here, we examine if such a correlation exists in galaxy clusters using weak-lensing, strong-lensing, and X-ray data sets available for 20 high-mass clusters targeted by the Cluster Lensing And Supernova survey with Hubble (CLASH). By combining our CLASH data with stellar mass estimates for the brightest cluster galaxies (BCGs) and accounting for the stellar baryonic component in clusters, we determine, for the first time, an RAR on BCG-cluster scales. The resulting RAR is well described by a tight power-law relation, g_tot_{propto}g_bar_^0.51-0.05+0.04^, with lognormal intrinsic scatter of 14.7_-2.8_^+2.9^%. The slope is consistent with the low acceleration limit of the RAR in galaxies, g_tot_=(g_{dagger}_,g_bar_)^0.5^, whereas the intercept implies a much higher acceleration scale of g_{dagger}_=(2.02+/-0.11)x10^-9^m/s^2^, indicating that there is no universal RAR that holds on all scales from galaxies to clusters. We find that the observed RAR in CLASH clusters is consistent with predictions from a semianalytical model developed in the standard {Lambda}CDM framework. Our results also predict the presence of a baryonic Faber-Jackson relation ({sigma}_v^4^{propto}M_bar_) on cluster scales.