- ID:
- ivo://CDS.VizieR/J/ApJS/243/17
- Title:
- Strong DES lens candidates from neural networks
- Short Name:
- J/ApJS/243/17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We search Dark Energy Survey (DES) Year 3 imaging for galaxy-galaxy strong gravitational lenses using convolutional neural networks, extending previous work with new training sets and covering a wider range of redshifts and colors. We train two neural networks using images of simulated lenses, then use them to score postage-stamp images of 7.9 million sources from DES chosen to have plausible lens colors based on simulations. We examine 1175 of the highest-scored candidates and identify 152 probable or definite lenses. Examining an additional 20000 images with lower scores, we identify a further 247 probable or definite candidates. After including 86 candidates discovered in earlier searches using neural networks and 26 candidates discovered through visual inspection of blue-near-red objects in the DES catalog, we present a catalog of 511 lens candidates.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/other/RAA/20.2
- Title:
- Strong galaxy-galaxy lensing in SDSS-III BOSS
- Short Name:
- J/other/RAA/20.2
- Date:
- 03 Dec 2021 00:49:25
- Publisher:
- CDS
- Description:
- Strong lensing is one of the most spectacular views in the universe. Many cosmological applications have been proposed, but the number of such lensing systems is still limited. In this work, we applied an improved version of a previously developed spectroscopic lensing search method to the SDSS-III BOSS and proposed a list of highly possible candidates. Follow-up CFHT Megacam imaging observations were performed for five systems, and two out of five are probably strong lensing systems with at least one image close to the central galaxy, although no counter images are detected.
- ID:
- ivo://CDS.VizieR/J/ApJ/894/78
- Title:
- Strong gravitational lenses from DECaLS
- Short Name:
- J/ApJ/894/78
- Date:
- 03 Dec 2021 00:50:48
- Publisher:
- CDS
- Description:
- We perform a semi-automated search for strong gravitational lensing systems in the 9000 deg2 Dark Energy Camera Legacy Survey (DECaLS), part of the Dark Energy Spectroscopic Instrument Legacy Imaging Surveys. The combination of the depth and breadth of these surveys are unparalleled at this time, making them particularly suitable for discovering new strong gravitational lensing systems. We adopt the deep residual neural network architecture developed by Lanusse+ (2018MNRAS.473.3895L) for the purpose of finding strong lenses in photometric surveys. We compile a training sample that consists of known lensing systems in the Legacy Surveys and the Dark Energy Survey as well as non-lenses in the footprint of DECaLS. In this paper we show the results of applying our trained neural network to the cutout images centered on galaxies typed as ellipticals in DECaLS. The images that receive the highest scores (probabilities) are visually inspected and ranked. Here we present 335 candidate strong lensing systems, identified for the first time.
- ID:
- ivo://CDS.VizieR/J/ApJ/819/114
- Title:
- Strong lensing mass modeling of 4 HFF clusters
- Short Name:
- J/ApJ/819/114
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We conduct precise strong lensing mass modeling of four Hubble Frontier Field (HFF) clusters, Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745, and MACS J1149.6+2223, for which HFF imaging observations are completed. We construct a refined sample of more than 100 multiple images for each cluster by taking advantage of the full-depth HFF images, and conduct mass modeling using the glafic software, which assumes simply parametrized mass distributions. Our mass modeling also exploits a magnification constraint from the lensed SN Ia HFF14Tom for Abell 2744 and positional constraints from the multiple images S1-S4 of the lensed supernova SN Refsdal for MACS J1149.6+2223. We find that our best-fitting mass models reproduce the observed image positions with rms errors of ~0.4", which are smaller than rms errors in previous mass modeling that adopted similar numbers of multiple images. Our model predicts a new image of SN Refsdal with a relative time delay and magnification that are fully consistent with a recent detection of reappearance. We then construct catalogs of z~6-9 dropout galaxies behind the four clusters and estimate magnification factors for these dropout galaxies with our best-fitting mass models. The dropout sample from the four cluster fields contains ~120 galaxies at z>~6, about 20 of which are predicted to be magnified by a factor of more than 10. Some of the high-redshift galaxies detected in the HFF have lensing-corrected magnitudes of M_UV_~-15 to -14. Our analysis demonstrates that the HFF data indeed offer an ideal opportunity to study faint high-redshift galaxies. All lensing maps produced from our mass modeling will be made available on the Space Telescope Science Institute website (https://archive.stsci.edu/prepds/frontier/lensmodels/).
- ID:
- ivo://CDS.VizieR/J/A+A/632/A36
- Title:
- Strong lensing models of 8 CLASH clusters
- Short Name:
- J/A+A/632/A36
- Date:
- 09 Nov 2021
- Publisher:
- CDS
- Description:
- We carry out a detailed strong lensing analysis of a sub-sample of eight galaxy clusters of the Cluster Lensing And Supernova survey with Hubble (CLASH), in the redshift range of z_cluster_=[0.23-0.59], using extensive spectroscopic information, primarily from the Multi Unit Spectroscopic Explorer (MUSE) archival data and complemented with CLASH-VLT redshift measurements. The observed positions of the multiple images of strongly lensed background sources are used to constrain parametric models describing the cluster total mass distributions. Different models are tested in each cluster depending on the complexity of its mass distribution and on the number of detected multiple images. Four clusters show more than five spectroscopically confirmed multiple image families. In this sample, we do not make use of families that are only photometrically identified, in order to reduce model degeneracies between the values of the total mass of a cluster and of the source redshifts, and systematics due to the potential misidentifications of some multiple images. For the remaining four systems, we use additional families without any spectroscopic confirmation to increase the number of strong lensing constraints up to the number of free parameters in our parametric models. We present spectroscopic confirmation of 27 multiply lensed sources, with no previous spectroscopic measurements, spanning over the redshift range of z_src_=[0.7-6.1]. Moreover, we confirm an average of 48 galaxy members in the core of each cluster, thanks to the high efficiency and large field of view of MUSE. We use this information to derive precise strong lensing models, projected total mass distributions and magnification maps. We show that, despite having different properties (i.e., number of mass components, total mass, redshift, etc), the projected total mass and mass density profiles of all clusters have very similar shapes, when rescaled by independent measurements of M200c and R200c. Specifically, we measure the mean value of the projected total mass of our cluster sample within 10 (20)% of R200c to be 0.13 (0.32) of M200c, with a remarkably small scatter of 5 (6)%. Furthermore, the large number of high-z sources and the precise magnification maps derived in this work for four clusters add up to the sample of high-quality gravitational telescopes to be used to study the faint and distant Universe.
- ID:
- ivo://CDS.VizieR/J/ApJ/806/185
- Title:
- Strong-lensing systems from 4 surveys
- Short Name:
- J/ApJ/806/185
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper, we assemble a catalog of 118 strong gravitational lensing systems from the Sloan Lens ACS Survey (SLACS), BOSS emission-line lens survey (BELLS), Lens Structure and Dynamics (LSD), and Strong Lensing Legacy Survey (SL2S) and use them to constrain the cosmic equation of state. In particular, we consider two cases of dark energy phenomenology: the XCDM model, where dark energy is modeled by a fluid with constant w equation-of-state parameter, and in the Chevalier-Polarski-Linder (CPL) parameterization, where w is allowed to evolve with redshift, w(z)=w_0_+w_1_(z/1+z). We assume spherically symmetric mass distribution in lensing galaxies, but we relax the rigid assumption of the SIS model in favor of a more general power-law index {gamma}, also allowing it to evolve with redshifts {gamma}(z). Our results for the XCDM cosmology show agreement with values (concerning both w and {gamma} parameters) obtained by other authors. We go further and constrain the CPL parameters jointly with {gamma}(z). The resulting confidence regions for the parameters are much better than those obtained with a similar method in the past. They are also showing a trend of being complementary to the Type Ia supernova data. Our analysis demonstrates that strong gravitational lensing systems can be used to probe cosmological parameters like the cosmic equation of state for dark energy. Moreover, they have a potential to judge whether the cosmic equation of state evolved with time or not.
- ID:
- ivo://CDS.VizieR/J/ApJS/247/12
- Title:
- Strong lens models for 37 clusters from SGAS
- Short Name:
- J/ApJS/247/12
- Date:
- 08 Mar 2022 13:45:09
- Publisher:
- CDS
- Description:
- We present strong gravitational lensing models for 37 galaxy clusters from the Sloan Digital Sky Survey Giant Arcs Survey (SGAS). We combine data from multi-band Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging, with ground-based imaging and spectroscopy from Magellan, Gemini, Apache Point Observatory, and the Multiple Mirror Telescope, in order to detect and spectroscopically confirm new multiply imaged lensed background sources behind the clusters. We report spectroscopic or photometric redshifts of sources in these fields, including cluster galaxies and background sources. Based on all available lensing evidence, we construct and present strong-lensing mass models for these galaxy clusters. The clusters span a redshift range of 0.176<z<0.66 with a median redshift of z=0.45, and sample a wide range of dynamical masses, 1.5<M_200_<35x10^14^M_{sun}_, as estimated from their velocity dispersions. As these clusters were selected as lenses primarily owing to a fortuitous alignment with background galaxies that results in giant arcs, they exhibit a wide range in Einstein radii, 1.3"<{theta}_E_<23.1" for a source at z=2, with a median {theta}_E_=10.8".
- ID:
- ivo://CDS.VizieR/J/MNRAS/477/L70
- Title:
- Strongly lensed quasars in SDSS
- Short Name:
- J/MNRAS/477/L70
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the discovery of three quasar lenses in the Sloan Digital Sky Survey, selected using two novel photometry-based selection techniques. The J0941+0518 system, with two point sources separated by 5.46 arcsec on either side of a galaxy, has source and lens redshifts 1.54 and 0.343. Images of J2257+2349 show two point sources separated by 1.67 arcsec on either side of an E/S0 galaxy. The extracted spectra show two images of the same quasar at z_s_=2.10. SDSS J1640+1045 has two quasar spectra at z_s_=1.70 and fits to the SDSS and Pan-STARRS images confirm the presence of a galaxy between the two point sources. We observed 56 photometrically selected lens candidates in this follow-up campaign, confirming three new lenses, re-discovering one known lens, and ruling out 36 candidates, with 16 still inconclusive. This initial campaign demonstrates the power of purely photometric selection techniques in finding lensed quasars.
- ID:
- ivo://CDS.VizieR/J/MNRAS/473/5154
- Title:
- Strong MgII absorber blazars
- Short Name:
- J/MNRAS/473/5154
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- It is widely believed that the cool gas clouds traced by MgII absorption, within a velocity offset of 5000km/s relative to the background quasar are mostly associated with the quasar itself, whereas the absorbers seen at larger velocity offsets towards us are intervening absorber systems and hence their existence is completely independent of the background quasar. Recent evidence by Bergeron et al. (2011A&A...525A..61P, hereinafter BBM) has seriously questioned this paradigm, by showing that the number density of intervening MgII absorbers towards the 45 blazars in their sample is nearly two times the expectation based on the MgII absorption systems seen towards normal quasars (QSOs). Given its serious implications, it becomes important to revisit this finding, by enlarging the blazar sample and subjecting it to an independent analysis. Here, we first report the outcome of our re-analysis of the available spectroscopic data for the BBM sample itself. Our analysis of the BBM sample reproduces their claimed factor of 2 excess of dN/dz along blazar sightlines, vis-a-vis normal QSOs. We have also assembled an approximately three times larger sample of blazars, albeit with moderately sensitive optical spectra. Using this sample together with the BBM sample, our analysis shows that the dN/dz of the MgII absorbers statistically matches that known for normal QSO sightlines. Further, the analysis indicates that associated absorbers might be contributing significantly to the estimated dN/dz up to offset speeds {DELTA}v~0.2c relative to the blazar.
- ID:
- ivo://CDS.VizieR/J/ApJ/739/L44
- Title:
- Structural data for galaxies between 0.2<z<2.7
- Short Name:
- J/ApJ/739/L44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of the size growth seen in early-type galaxies over 10Gyr of cosmic time. Our analysis is based on a homogeneous synthesis of published data from 16 spectroscopic surveys observed at similar spatial resolution, augmented by new measurements for galaxies in the Gemini Deep Deep Survey. In total, our sample contains structural data for 465 galaxies (mainly early-type) in the redshift range 0.2<z<2.7. The size evolution of passively evolving galaxies over this redshift range is gradual and continuous, with no evidence for an end or change to the process around z~1, as has been hinted at by some surveys which analyze subsets of the data in isolation. The size growth appears to be independent of stellar mass, with the mass-normalized half-light radius scaling with redshift as R_e_{propto}(1+z)^-1.62+/-0.34^. Surprisingly, this power law seems to be in good agreement with the recently reported continuous size evolution of UV-bright galaxies in the redshift range z~0.5-3.5. It is also in accordance with the predictions from recent theoretical models.