- ID:
- ivo://CDS.VizieR/J/MNRAS/507/5034
- Title:
- COSMOS2015 dataset machine learning photo-z
- Short Name:
- J/MNRAS/507/5034
- Date:
- 03 Dec 2021 13:07:03
- Publisher:
- CDS
- Description:
- In order to answer the open questions of modern cosmology and galaxy evolution theory, robust algorithms for calculating photometric redshifts (photo-z) for very large samples of galaxies are needed. Correct estimation of the various photo-z algorithms' performance requires attention to both the performance metrics and the data used for the estimation. In this work, we use the supervised machine learning algorithm MLPQNA (Multi-Layer Perceptron with Quasi-Newton Algorithm) to calculate photometric redshifts for the galaxies in the COSMOS2015 catalogue and the unsupervised Self-Organizing Maps (SOM) to determine the reliability of the resulting estimates. We find that for z_spec_<1.2, MLPQNA photo-z predictions are on the same level of quality as spectral energy distribution fitting photo-z. We show that the SOM successfully detects unreliable zspec that cause biases in the estimation of the photo-z algorithms' performance. Additionally, we use SOM to select the objects with reliable photo-z predictions. Our cleaning procedures allow us to extract the subset of objects for which the quality of the final photo-z catalogues is improved by a factor of 2, compared to the overall statistics.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/172/523
- Title:
- COSMOS field Ly{alpha} emitters at z~5.7
- Short Name:
- J/ApJS/172/523
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from a narrow-band optical survey of a contiguous area of 1.95deg^2^, covered by the Cosmic Evolution Survey (COSMOS). Both optical narrow-band ({lambda}c=8150{AA} and {delta}{lambda}=120{AA}) and broad-band (B, V, g', r', i', and z') imaging observations were performed with the Subaru prime-focus camera, Suprime-Cam on the Subaru Telescope. We provide the largest contiguous narrow-band survey, targeting Ly{alpha} emitters (LAEs) at z~5.7. We find a total of 119 LAE candidates at z~5.7. Over the wide-area covered by this survey, we find no strong evidence for large-scale clustering of LAEs. We estimate a star formation rate (SFR) density of ~7x10-4M_{sun}_/yr/Mpc^3^ for LAEs at z~5.7 and compare it with previous measurements.
- ID:
- ivo://CDS.VizieR/J/A+A/567/A76
- Title:
- COSMOS field radio-loud AGN population at z>1
- Short Name:
- J/A+A/567/A76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We select a sample of radio galaxies at high redshifts (z>1) in the COSMOS field by cross-matching optical and infrared (IR) images with the FIRST radio data. The aim of this study is to explore the high-z radio-loud (RL) active galactic nuclei (AGN) population at much lower luminosities than the classical samples of distant radio sources, which are similar to those of the local population of radio galaxies. Precisely, we extended a previous analysis focused on low-luminosity radio galaxies. The wide multiwavelength coverage provided by the COSMOS survey allows us to derive their spectral energy distributions (SEDs). We model them with our own developed technique 2SPD that includes old and young stellar populations and dust emission. When added to those previously selected, we obtain a sample of 74 RL AGN. The SED modeling returns several important quantities associated with the AGN and host properties. The resulting photometric redshifts range from z~0.7 to 3. The sample mostly includes compact radio sources but also 21 FR IIs sources; the radio power distribution of the sample covers ~10^31.5^-10^34.3^erg/s/Hz, thus straddling the local FR I/FR II break. The inferred range of stellar mass of the hosts is ~10^10^-10^11.5^M_{sun}_. The SEDs are dominated by the contribution from an old stellar population with an age of ~1-3Gyr for most of the sources. However, UV and mid-IR (MIR) excesses are observed for half of the sample. The dust luminosities inferred from the MIR excesses are in the range, L_dust_~10^43^-10^45.5^erg/s, which are associated with temperatures approximately of 350-1200K. Estimates of the UV component yield values of ~10^41.5^-10^45.5^erg/s at 2000{AA}. The UV emission is significantly correlated with both IR and radio luminosities; the former being the stronger link. However, the origin of UV and dust emission, whether it is produced by the AGN of by star formation, is still unclear. Our results show that this RLAGN population at high redshifts displays a wide variety of properties. Low-power radio galaxies, which are associated with UV- and IR-faint hosts are generally similar to red massive galaxies of the local FR Is. At the opposite side of the radio luminosity distribution, large MIR and UV excesses are observed in objects consistent with quasar-like AGN, as also proved by their high dust temperatures, which are more similar to local FR IIs.
- ID:
- ivo://CDS.VizieR/J/A+A/574/A112
- Title:
- COSMOS field variability-selected AGN nuclei
- Short Name:
- J/A+A/574/A112
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Active galaxies are characterized by variability at every wavelength, with timescales from hours to years depending on the observing window. Optical variability has proven to be an effective way of detecting AGNs in imaging surveys, lasting from weeks to years. In the present work we test the use of optical variability as a tool to identify active galactic nuclei in the VST multiepoch survey of the COSMOS field, originally tailored to detect supernova events. We make use of the multiwavelength data provided by other COSMOS surveys to discuss the reliability of the method and the nature of our AGN candidates. The selection on the basis of optical variability returns a sample of 83 AGN candidates; based on a number of diagnostics, we conclude that 67 of them are confirmed AGNs (81% purity), 12 are classified as supernovae, while the nature of the remaining 4 is unknown. For the subsample of AGNs with some spectroscopic classification, we find that Type 1 are prevalent (89%) compared to Type 2 AGNs (11%). Overall, our approach is able to retrieve on average 15% of all AGNs in the field identified by means of spectroscopic or X-ray classification, with a strong dependence on the source apparent magnitude (completeness ranging from 26% to 5%). In particular, the completeness for Type 1 AGNs is 25%, while it drops to 6% for Type 2 AGNs. The rest of the X-ray selected AGN population presents on average a larger rms variability than the bulk of non-variable sources, indicating that variability detection for at least some of these objects is prevented only by the photometric accuracy of the data. The low completeness is in part due to the short observing span: we show that increasing the temporal baseline results in larger samples as expected for sources with a red-noise power spectrum. Our results allow us to assess the usefulness of this AGN selection technique in view of future wide-field surveys.
- ID:
- ivo://CDS.VizieR/J/ApJ/690/1236
- Title:
- COSMOS photometric redshift catalog
- Short Name:
- J/ApJ/690/1236
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present accurate photometric redshifts (photo-z) in the 2-deg^2^ COSMOS field. The redshifts are computed with 30 broad, intermediate, and narrowbands covering the UV (Galaxy Evolution Explorer), visible near-IR (NIR; Subaru, Canada-France-Hawaii Telescope (CFHT), United Kingdom Infrared Telescope, and National Optical Astronomy Observatory), and mid-IR (Spitzer/IRAC). A {chi}^2^ template-fitting method (Le Phare) was used and calibrated with large spectroscopic samples from the Very Large Telescope Visible Multi-Object Spectrograph and the Keck Deep Extragalactic Imaging Multi-Object Spectrograph. We develop and implement a new method which accounts for the contributions from emission lines ([OII], H{beta}, H{alpha}, and Ly{alpha}) to the spectral energy distributions (SEDs). The treatment of emission lines improves the photo-z accuracy by a factor of 2.5. Comparison of the derived photo-z with 4148 spectroscopic redshifts (i.e., {Delta}z=zs-zp) indicates a dispersion of {sigma}_{Delta}z/(1+zs)_=0.007 at i^+^_AB_<22.5, a factor of 2-6 times more accurate than earlier photo-z in the COSMOS, CFHT Legacy Survey, and the Classifying Object by Medium-Band Observations-17 survey fields. At fainter magnitudes i^+^_AB_<24 and z<1.25, the accuracy is {sigma}_{Delta}z/(1+zs)_=0.012. The deep NIR and Infrared Array Camera coverage enables the photo-z to be extended to z~2, albeit with a lower accuracy ({sigma}_{Delta}z/(1+zs)_=0.006 at i^+^_AB_~24). The redshift distribution of large magnitude-selected samples is derived and the median redshift is found to range from z_m_= 0.66 at 22 <i^+^_AB_<22.5 to z_m_=1.06 at 24.5<i^+^_AB_<25. At i ^+^_AB_<26.0, the multiwavelength COSMOS catalog includes approximately 607,617 objects. The COSMOS-30 photo-z enables the full exploitation of this survey for studies of galaxy and large-scale structure evolution at high redshift.
- ID:
- ivo://CDS.VizieR/J/ApJS/176/19
- Title:
- COSMOS: strong lens systems
- Short Name:
- J/ApJS/176/19
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first catalog of 67 strong galaxy-galaxy lens candidates discovered in the 1.64deg^2^ Hubble Space Telescope COSMOS survey. Twenty of these systems display multiple images or strongly curved large arcs. Our initial search is performed by visual inspection of the data and is restricted, for practical considerations, to massive early-type lens galaxies with arcs found at radii smaller than ~5". Simple mass models are constructed for the best lens candidates, and our results are compared to the strong lensing catalogs of the SLACS survey and the CASTLES database. These new strong galaxy-galaxy lensing systems constitute a valuable sample to study the mass distribution of early-type galaxies and their associated dark matter halos.
- ID:
- ivo://CDS.VizieR/J/ApJS/206/8
- Title:
- COSMOS/UltraVISTA Ks-selected catalogs v4.1
- Short Name:
- J/ApJS/206/8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalog covering 1.62deg^2^ of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15-24{mu}m including the available GALEX, Subaru, Canada-France-Hawaii Telescope, VISTA, and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA K_s_ band imaging that reaches a depth of K_s,tot_=23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z_phot_) for all galaxies computed with the EAZY code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z~1.5 the z_phot_ are accurate to {Delta}z/(1+z)=0.013, with a catastrophic outlier fraction of only 1.6%. The z_phot_ also show good agreement with the z_phot_ from the NEWFIRM Medium Band Survey out to z~3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U-V and V-J colors, L_2800_ and L_IR_. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z~2. Star-forming galaxies also obey a star-forming "main sequence" out to z~2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA K_s_-selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z~3-4.
288. COSMOS 70um sources
- ID:
- ivo://CDS.VizieR/J/ApJ/709/572
- Title:
- COSMOS 70um sources
- Short Name:
- J/ApJ/709/572
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a large robust sample of 1503 reliable and unconfused 70um selected sources from the multiwavelength data set of the Cosmic Evolution Survey. Using the Spitzer IRAC and MIPS photometry, we estimate the total infrared (IR) luminosity, LIR (8-1000um), by finding the best-fit template from several different template libraries. The long-wavelength 70 and 160um data allow us to obtain a reliable estimate of LIR, accurate to within 0.2 and 0.05dex, respectively. The 70um data point enables a significant improvement over the luminosity estimates possible with only a 24um detection. The full sample spans a wide range in IR luminosity, LIR~10^8^-10^14^L_{sun}_, with a median luminosity of 10^11.4^L_{sun}_. We identify a total of 687 luminous, 303 ultraluminous, and 31 hyperluminous infrared galaxies (LIRGs, ULIRGs, and HyLIRGs) over the redshift range 0.01<z<3.5 with a median redshift of 0.5. Presented here are the full spectral energy distributions (SEDs) for each of the sources compiled from the extensive multiwavelength data set from the ultraviolet (UV) to the far-infrared. A catalog of the general properties of the sample (including the photometry, redshifts, and LIR) is included with this paper.
- ID:
- ivo://CDS.VizieR/J/ApJS/203/15
- Title:
- Counterparts to 1.4GHz sources in ECDF-S
- Short Name:
- J/ApJS/203/15
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study a sample of 883 sources detected in a deep Very Large Array survey at 1.4GHz in the Extended Chandra Deep Field South. This paper focuses on the identification of their optical and infrared (IR) counterparts. We use a likelihood-ratio technique that is particularly useful when dealing with deep optical images to minimize the number of spurious associations. We find a reliable counterpart for 95% of our radio sources. Most of the counterparts (74%) are detected at optical wavelengths, but there is a significant fraction (21%) that are only detectable in the IR. Combining newly acquired optical spectra with data from the literature, we are able to assign a redshift to 81% of the identified radio sources (37% spectroscopic). We also investigate the X-ray properties of the radio sources using the Chandra 4Ms and 250ks observations. In particular, we use a stacking technique to derive the average properties of radio objects undetected in the Chandra images. The results of our analysis are collected in a new catalog containing the position of the optical/IR counterpart, the redshift information, and the X-ray fluxes. It is the deepest multi-wavelength catalog of radio sources, which will be used for future study of this galaxy population.
- ID:
- ivo://CDS.VizieR/J/A+A/642/A192
- Title:
- C3R2-KMOS zsp & galaxy physical properties
- Short Name:
- J/A+A/642/A192
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Complete Calibration of the Colour-Redshift Relation survey (C3R2) is a spectroscopic effort involving ESO and Keck facilities designed specifically to empirically calibrate the galaxy colour-redshift relation - P(zjC) to the Euclid depth (i_AB_=24.5) and is intimately linked to the success of upcoming Stage IV dark energy missions based on weak lensing cosmology. The aim is to build a spectroscopic calibration sample that is as representative as possible of the galaxies of the Euclid weak lensing sample. In order to minimise the number of spectroscopic observations necessary to fill the gaps in current knowledge of the P(zjC), self-organising map (SOM) representations of the galaxy colour space have been constructed. Here we present the first results of an ESO@VLT Large Programme approved in the context of C3R2, which makes use of the two VLT optical and near-infrared multi-object spectrographs, FORS2 and KMOS. This data release paper focuses on high-quality spectroscopic redshifts of high-redshift galaxies observed with the KMOS spectrograph in the near-infrared H- and K-bands. A total of 424 highly-reliable redshifts are measured in the 1.3<=z<=2.5 range, with total success rates of 60.7% in the H-band and 32.8% in the K-band. The newly determined redshifts fill 55% of high (mainly regions with no spectroscopic measurements) and 35% of lower (regions with low-resolution/low-quality spectroscopic measurements) priority empty SOMgrid cells.We measured H fluxes in a 1.2" radius aperture from the spectra of the spectroscopically confirmed galaxies and converted them into star formation rates. In addition, we performed an SED fitting analysis on the same sample in order to derive stellar masses, E(B-V), total magnitudes, and SFRs. We combine the results obtained from the spectra with those derived via SED fitting, and we show that the spectroscopic failures come from either weakly star-forming galaxies (at z<1.7, i.e. in the H-band) or low S/N spectra (in the K-band) of z>2 galaxies.