- ID:
- ivo://CDS.VizieR/J/ApJ/746/16
- Title:
- Modelling the convection zone
- Short Name:
- J/ApJ/746/16
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The base of the convection zone (CZ) is a source of acoustic glitches in the asteroseismic frequency spectra of solar-like oscillators, allowing one to precisely measure the acoustic depth to the feature. We examine the sensitivity of the depth of the CZ to mass, stellar abundances, and input physics, and in particular, the use of a measurement of the acoustic depth to the CZ as an atmosphere-independent, absolute measure of stellar metallicities. We find that for low-mass stars on the main sequence with 0.4M_{sun}_<=M<=1.6M_{sun}_, the acoustic depth to the base of the CZ, normalized by the acoustic depth to the center of the star, {tau}_cz,n_, is both a strong function of mass, and varies at the 0.5%-1% per 0.1 dex level in [Z/X], and is therefore also a sensitive probe of the composition. We estimate the theoretical uncertainties in the stellar models and show that combined with reasonable observational uncertainties we can expect to measure the metallicity to within 0.15-0.3 dex for solar-like stars. We discuss the applications of this work to rotational mixing, particularly in the context of the observed mid-F star Li dip, and to distinguishing between different mixtures of heavy elements.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/786/117
- Title:
- M31 PHAT star clusters ages and masses
- Short Name:
- J/ApJ/786/117
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present ages and masses for 601 star clusters in M31 from the analysis of the six filter integrated light measurements from near-ultraviolet to near-infrared wavelengths, made as part of the Panchromatic Hubble Andromeda Treasury (PHAT). We derive the ages and masses using a probabilistic technique, which accounts for the effects of stochastic sampling of the stellar initial mass function. Tests on synthetic data show that this method, in conjunction with the exquisite sensitivity of the PHAT observations and their broad wavelength baseline, provides robust age and mass recovery for clusters ranging from ~10^2^ to 2x10^6^ M_{sun}_. We find that the cluster age distribution is consistent with being uniform over the past 100 Myr, which suggests a weak effect of cluster disruption within M31. The age distribution of older (>100 Myr) clusters falls toward old ages, consistent with a power-law decline of index -1, likely from a combination of fading and disruption of the clusters. We find that the mass distribution of the whole sample can be well described by a single power law with a spectral index of -1.9+/-0.1 over the range of 10^3^-3x10^5^ M_{sun}_. However, if we subdivide the sample by galactocentric radius, we find that the age distributions remain unchanged. However, the mass spectral index varies significantly, showing best-fit values between -2.2 and -1.8, with the shallower slope in the highest star formation intensity regions. We explore the robustness of our study to potential systematics and conclude that the cluster mass function may vary with respect to environment.
- ID:
- ivo://CDS.VizieR/J/AJ/154/184
- Title:
- Multiplicity of RV exoplanet host stars
- Short Name:
- J/AJ/154/184
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Given the frequency of stellar multiplicity in the solar neighborhood, it is important to study the impacts this can have on exoplanet properties and orbital dynamics. There have been numerous imaging survey projects established to detect possible low-mass stellar companions to exoplanet host stars. Here, we provide the results from a systematic speckle imaging survey of known exoplanet host stars. In total, 71 stars were observed at 692 and 880 nm bands using the Differential Speckle Survey Instrument at the Gemini-north Observatory. Our results show that all but two of the stars included in this sample have no evidence of stellar companions with luminosities down to the detection and projected separation limits of our instrumentation. The mass-luminosity relationship is used to estimate the maximum mass a stellar companion can have without being detected. These results are used to discuss the potential for further radial velocity follow-up and interpretation of companion signals.
- ID:
- ivo://CDS.VizieR/J/ApJ/833/85
- Title:
- Multi-wavelength analysis of the MIR bubble N37
- Short Name:
- J/ApJ/833/85
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have performed a multi-wavelength analysis of a mid-infrared (MIR) bubble N37 and its surrounding environment. The selected 15'x15' area around the bubble contains two molecular clouds (N37 cloud; V_lsr_~37-43km/s, and C25.29+0.31; V_lsr_~43-48km/s) along the line of sight. A total of seven OB stars are identified toward the bubble N37 using photometric criteria, and two of them are spectroscopically confirmed as O9V and B0V stars. The spectro-photometric distances of these two sources confirm their physical association with the bubble. The O9V star appears to be the primary ionizing source of the region, which is also in agreement with the desired Lyman continuum flux analysis estimated from the 20cm data. The presence of the expanding HII region is revealed in the N37 cloud, which could be responsible for the MIR bubble. Using the ^13^CO line data and photometric data, several cold molecular condensations as well as clusters of young stellar objects (YSOs) are identified in the N37 cloud, revealing ongoing star formation (SF) activities. However, the analysis of ages of YSOs and the dynamical age of the HII region do not support the origin of SF due to the influence of OB stars. The position-velocity analysis of ^13^CO data reveals that two molecular clouds are interconnected by a bridge-like structure, favoring the onset of a cloud-cloud collision process. The SF activities (i.e., the formation of YSO clusters and OB stars) in the N37 cloud are possibly influenced by the cloud-cloud collision.
- ID:
- ivo://CDS.VizieR/J/AJ/159/63
- Title:
- New AO obs. of exoplanets & brown dwarf companions
- Short Name:
- J/AJ/159/63
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The orbital eccentricities of directly imaged exoplanets and brown dwarf companions provide clues about their formation and dynamical histories. We combine new high-contrast imaging observations of substellar companions obtained primarily with Keck/NIRC2 together with astrometry from the literature to test for differences in the population-level eccentricity distributions of 27 long-period giant planets and brown dwarf companions between 5 and 100au using hierarchical Bayesian modeling. Orbit fits are performed in a uniform manner for companions with short orbital arcs; this typically results in broad constraints for individual eccentricity distributions, but together as an ensemble, these systems provide valuable insight into their collective underlying orbital patterns. The shape of the eccentricity distribution function for our full sample of substellar companions is approximately flat from e=0-1. When subdivided by companion mass and mass ratio, the underlying distributions for giant planets and brown dwarfs show significant differences. Low mass ratio companions preferentially have low eccentricities, similar to the orbital properties of warm Jupiters found with radial velocities and transits. We interpret this as evidence for in situ formation on largely undisturbed orbits within massive extended disks. Brown dwarf companions exhibit a broad peak at e~0.6-0.9 with evidence for a dependence on orbital period. This closely resembles the orbital properties and period-eccentricity trends of wide (1-200au) stellar binaries, suggesting that brown dwarfs in this separation range predominantly form in a similar fashion. We also report evidence that the "eccentricity dichotomy" observed at small separations extends to planets on wide orbits: the mean eccentricity for the multi-planet system HR8799 is lower than for systems with single planets. In the future, larger samples and continued astrometric orbit monitoring will help establish whether these eccentricity distributions correlate with other parameters such as stellar host mass, multiplicity, and age.
- ID:
- ivo://CDS.VizieR/J/ApJS/245/32
- Title:
- Newly identified star clusters in Gaia DR2
- Short Name:
- J/ApJS/245/32
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the Star cluster Hunting Pipeline (SHiP) that can identify star clusters in Gaia second data release (DR2) data and establish a star cluster catalog for the Galactic disk. A friend-of-friend-based cluster finder method is used to identify star clusters using five-dimensional stellar parameters, l,b,{omega},{mu}_{alpha}_cos{delta}, and {mu}_{delta}_. Our new catalog contains 2443 star cluster candidates identified from disk stars located within |b|=25{deg} and with G<18mag. An automatic isochrone fitting scheme is applied to all cluster candidates. With a combination of parameters obtained from isochrone fitting, we classify cluster candidates into three classes (Class 1, 2, and 3). Class 1 clusters are the most probable star cluster candidates with the most stringent criteria. Most of these clusters are nearby (within 4kpc). Our catalog is crossmatched with three Galactic star cluster catalogs, Kharchenko+ (2013, J/A+A/558/A53), Cantat-Gaudin+ (2018, J/A+A/618/A93 and 2019, J/A+A/624/A126), and Bica+ (2019, J/AJ/157/12). The proper motion and parallax of matched star clusters are in good agreement with these earlier catalogs. We discover 76 new star cluster candidates that are not listed in these three catalogs. The majority of these are clusters older than log(age/yr)=8.0 and are located in the inner disk with |b|<5{deg}. The recent discovery of new star clusters suggests that current Galactic star cluster catalogs are still incomplete. Among the Class 1 cluster candidates, we find 56 candidates for star cluster groups.
- ID:
- ivo://CDS.VizieR/J/AJ/154/57
- Title:
- New SDSS and Washington photometry in Segue 3
- Short Name:
- J/AJ/154/57
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new SDSS and Washington photometry of the young outer-halo stellar system Segue 3. Combined with archival VI-observations, our most consistent results yield Z=0.006+/-0.001, log(Age)=9.42+/-0.08, (m-M)_0_=17.35+/-0.08, and E(B-V)=0.09+/-0.01, with a high binary fraction of 0.39+/-0.05 derived using the Padova models. We confirm that mass-segregation has occurred, supporting the hypothesis that this cluster is being tidally disrupted. A three-parameter King model yields a cluster radius of r_cl_=0.017{deg}+/-0.007{deg}, a core radius of r_c_=0.003{deg}+/-0.001{deg}, and a tidal radius of r_t_=0.04{deg}+/-0.02{deg}. A comparison of Padova and Dartmouth model-grids indicates that the cluster is not significantly {alpha}-enhanced, with a mean [Fe/H]=-0.55_-0.12_^+0.15^dex, and a population age of only 2.6+/-0.4Gyr. We rule out a statistically significant age spread at the main-sequence turnoff because of a narrow subgiant branch, and discuss the role of stellar rotation and cluster age, using Dartmouth and Geneva models: approximately 70% of the Seg 3 stars at or below the main-sequence turnoff have enhanced rotation. Our results for Segue 3 indicate that it is younger and more metal-rich than all previous studies have reported to date. From colors involving Washington C and SDSS-u filters, we identify several giants and a possible blue straggler for future follow-up spectroscopic studies, and we produce spectral energy distributions of previously known members and potential Segue 3 sources with Washington (CT_1_), Sloan (ugri), and VI-filters. Segue 3 shares the characteristics of unusual stellar systems that have likely been stripped from external dwarf galaxies as they are being accreted by the Milky Way, or that have been formed during such an event. Its youth, metallicity, and location are all inconsistent with Segue 3 being a cluster native to the Milky Way.
- ID:
- ivo://CDS.VizieR/J/A+A/607/A86
- Title:
- NGC 6334 and NGC 6357 OB stars spectra
- Short Name:
- J/A+A/607/A86
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The formation of high mass stars is still debated. For this reason, several projects, as the Herschel-HOBYS are focussed on the study of the earliest phases of massive star formation. As a result, massive star-forming complexes such as NGC 6334 and NGC 6357 have been observed in the far-infrared to study their massive dense cores where massive stars are expected to form. However, to better characterise the environment of these cores we need to understand the previous massive star formation history. To better characterize the environment of these massive dense cores we propose to study the previous high mass star formation and how these stars act on their environment. This study is based on spectral classification of the OB stars identified towards NGC 6334 and NGC 6357 with spectra taken with the AAOmega spectrograph on the Anglo-Australian Telescope (AAT). From the subsequent spectral classification of 109 stars across these regions we have been able to evaluate the following: distance, age, mass, global star-forming efficiency (SFE) and star-formation rate (SFR) of the regions. The physical conditions of the ionised gas for both complexes was also derived. We confirm that NGC 6334 and NGC 6357 belong to the Saggitarius-Carina arm which, in this direction, extends from 1kpc to 2.2kpc. From the location of the stars in Hertzprung-Russell diagram we show that stars older than ~10Myr are broadly spread across these complexes while younger stars are mainly located in the H ii regions and stellar clusters. Our data also suggests that some of the young stars can be considered as runaway stars. We evaluate a SFE of 0.019 and 0.021 and a SFR of 1.1x10^3^M_{sun}/Myr^ and 1.7x10^3^M_{sun}_/Myr for NGC 6334 and NGC 6357 respectively. We note that 25 OB stars have X-ray counterparts, most of them belonging to NGC 6357. This suggests that molecular clouds in NGC 6357 is more impacted by X-ray flux and stellar winds than for NGC 6334. Finally, from analysis of nebular lines (H{alpha}, [NII] and [SII]) from spectra from several regions of ionised gas, we confirm that the filaments in NGC 6357 are shock heated.
- ID:
- ivo://CDS.VizieR/J/A+A/623/A159
- Title:
- NGC6530 member parameters from Gaia-ESO survey
- Short Name:
- J/A+A/623/A159
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In very young clusters, stellar age distribution is the empirical proof of the duration of star formation (SF) and of the physical mechanisms involved in the process. We derived accurate stellar ages for the cluster NGC6530, associated with the Lagoon Nebula to infer its SF history. We use the Gaia-ESO survey observations and Gaia DR2 data, to derive cluster membership and fundamental stellar parameters. We identified 652 confirmed and 9 probable members. The reddening inferred for members and non-members allows us to distinguish MS stars and giants, in agreement with the distances inferred from Gaia DR2 data. The foreground and background stars show a spatial pattern that traces the 3D structure of the nebular dust component. We derive stellar ages for 382 confirmed cluster members and we find that the gravity-sensitive gamma index distribution for M stars is correlated with stellar age. For all members with Teff<5500K, the mean logarithmic age is 5.84 (units of years) with a dispersion of 0.36dex. The age distribution of stars with accretion and/or disk (CTTSe) is similar to that of stars without accretion and without disk (WTTSp). We interpret this dispersion as evidence of a real age spread since the total uncertainties on age determinations, derived from Monte Carlo simulations, are significantly smaller than the observed spread. This conclusion is supported by the evidence of a decreasing of the gravity-sensitive gamma index as a function of stellar ages. The presence of the age spread is also supported by the spatial distribution and the kinematics of old and young members. In particular, members with accretion and/or disk, formed in the last 1Myr, show evidence of subclustering around the cluster center, in the Hourglass Nebula and in the M8-E region, suggesting a possible triggering of star formation events by the O-type star ionization fronts.
160. NGC 7538 region YSOs
- ID:
- ivo://CDS.VizieR/J/MNRAS/467/2943
- Title:
- NGC 7538 region YSOs
- Short Name:
- J/MNRAS/467/2943
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Deep optical photometric data on the NGC 7538 region were collected and combined with archival data sets from the Chandra, 2MASS and Spitzer surveys to generate a new catalogue of young stellar objects (YSOs) including those not showing infrared excess emission. This new catalogue is complete down to 0.8M_{sun}_. The nature of the YSOs associated with the NGC 7538 region and their spatial distribution are used to study the star-formation process and the resultant mass function (MF) in the region. Out of the 419 YSOs, ~91 per cent have ages between 0.1 and 2.5Myr and ~86 per cent have masses between 0.5 and 3.5M_{sun}_, as derived by the spectral energy distribution fitting analysis. Around 24, 62 and 2 per cent of these YSOs are classified to be class I, class II and class III sources, respectively. The X-ray activities for the class I, class II and class III objects are not significantly different from each other. This result implies that the enhanced X-ray surface flux due to the increase in the rotation rate may be compensated for by the decrease in the stellar surface area during the pre-main-sequence evolution. Our analysis shows that the O3V type high-mass star IRS 6 may have triggered the formation of young low-mass stars up to a radial distance of 3pc. The MF shows a turn-off at around 1.5M_{sun}_ and the value of its slope {Gamma} in the mass range 1.5<M/M_{sun}_<6 is -1.76+/-0.24, which is steeper than the Salpeter value.