- ID:
- ivo://CDS.VizieR/J/AJ/153/259
- Title:
- The GAMBLES extension of the SLoWPoKES catalog
- Short Name:
- J/AJ/153/259
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >10^3^au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded from SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5Gyr) candidate binary pairs, of assorted mass, with typical separations between 10^3^ and 10^5.5^ au (0.002-1.5pc), using the published distances and proper motions from the Tycho-Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2pc; even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/156/286
- Title:
- The LEECH exoplanet imaging survey
- Short Name:
- J/AJ/156/286
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of the largest L' (3.8 {mu}m) direct imaging survey for exoplanets to date, the Large Binocular Telescope Interferometer Exozodi Exoplanet Common Hunt (LEECH). We observed 98 stars with spectral types from B to M. Cool planets emit a larger share of their flux in L' compared to shorter wavelengths, affording LEECH an advantage in detecting low-mass, old, and cold-start giant planets. We emphasize proximity over youth in our target selection, probing physical separations smaller than other direct imaging surveys. For FGK stars, LEECH outperforms many previous studies, placing tighter constraints on the hot-start planet occurrence frequency interior to ~20 au. For less luminous, cold-start planets, LEECH provides the best constraints on giant-planet frequency interior to ~20 au around FGK stars. Direct imaging survey results depend sensitively on both the choice of evolutionary model (e.g., hot- or cold-start) and assumptions (explicit or implicit) about the shape of the underlying planet distribution, in particular its radial extent. Artificially low limits on the planet occurrence frequency can be derived when the shape of the planet distribution is assumed to extend to very large separations, well beyond typical protoplanetary dust-disk radii (~<50 au), and when hot-start models are used exclusively. We place a conservative upper limit on the planet occurrence frequency using cold-start models and planetary population distributions that do not extend beyond typical protoplanetary dust-disk radii. We find that ~<90% of FGK systems can host a 7-10 M_Jup_ planet from 5 to 50 au. This limit leaves open the possibility that planets in this range are common.
- ID:
- ivo://CDS.VizieR/J/ApJS/212/6
- Title:
- The McGill magnetar catalog
- Short Name:
- J/ApJS/212/6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalog of the 26 currently known magnetars and magnetar candidates. We tabulate astrometric and timing data for all catalog sources, as well as their observed radiative properties, particularly the spectral parameters of the quiescent X-ray emission. We show histograms of the spatial and timing properties of the magnetars, comparing them with the known pulsar population, and we investigate and plot possible correlations between their timing, X-ray, and multiwavelength properties. We find the scale height of magnetars to be in the range of 20-31pc, assuming they are exponentially distributed. This range is smaller than that measured for OB stars, providing evidence that magnetars are born from the most massive O stars. From the same fits, we find that the Sun lies ~13-22pc above the Galactic plane, consistent with previous measurements. We confirm previously identified correlations between quiescent X-ray luminosity, L_X_, and magnetic field, B, as well as X-ray spectral power-law indexes, {Gamma} and B, and show evidence for an excluded region in a plot of L_X_ versus {Gamma}. We also present an updated kT versus characteristic age plot, showing that magnetars and high-B radio pulsars are hotter than lower-B neutron stars of similar age. Finally, we observe a striking difference between magnetars detected in the hard X-ray and radio bands; there is a clear correlation between the hard and soft X-ray fluxes, whereas the radio-detected magnetars all have low, soft X-ray flux, suggesting, if anything, that the two bands are anticorrelated.
- ID:
- ivo://CDS.VizieR/J/ApJ/846/93
- Title:
- The multiplicity of M dwarfs in young moving groups
- Short Name:
- J/ApJ/846/93
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We image 104 newly identified low-mass (mostly M-dwarf) pre-main sequence (PMS) members of nearby young moving groups (YMGs) with Magellan Adaptive Optics (MagAO) and identify 27 stellar binaries with instantaneous projected separation as small as 40mas. Fifteen were previously unknown. The total number of multiple systems in this sample including spectroscopic and visual binaries from the literature is 36, giving a raw stellar multiplicity rate of at least 35_-4_^+5^% for this population. In the separation range of roughly 1-300au in which infrared AO imaging is most sensitive, the raw multiplicity rate is at least 24_-4_^+5^% for binaries resolved by the MagAO infrared camera (Clio). The M-star subsample of 87 stars yields a raw multiplicity of at least 30_-4_^+5^% over all separations, 21_-4_^+5^% for secondary companions resolved by Clio from 1 to 300au (23_-4_^+5^% for all known binaries in this separation range). A combined analysis with binaries discovered by the Search for Associations Containing Young stars shows that stellar multiplicity fraction as a function of mass over the range of 0.2 to 1.2M_{sun}_ appears to be linearly flat, in contrast to the field, where multiplicity increases with mass. After bias corrections are applied, the multiplicity of low-mass YMG members (0.2-0.6M_{sun}_) is in excess of the field. The overall multiplicity fraction is also consistent with being constant in age and across YMGs, which suggests that multiplicity rates for this mass range are largely set by 10Myr without appreciable evolution thereafter.
- ID:
- ivo://CDS.VizieR/J/AJ/157/35
- Title:
- The population of pulsating variable stars in Sextans
- Short Name:
- J/AJ/157/35
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A large extension of the Sextans dwarf spheroidal galaxy, 7 deg^2^, has been surveyed for variable stars using the Dark Energy Camera at the Blanco Telescope at Cerro Tololo Inter-American Observatory, Chile. We report seven anomalous Cepheids, 199 RR Lyrae stars, and 16 dwarf Cepheids in the field. This is only the fifth extragalactic system in which dwarf Cepheids have been systematically searched. Henceforth, the new stars increase the census of stars coming from different environments that can be used to asses the advantages and limitations of using dwarf Cepheids as standard candles in populations for which the metallicity is not necessarily known. The dwarf Cepheids found in Sextans have a mean period of 0.066 day and a mean g amplitude of 0.87 mag. They are located below the horizontal branch, spanning a range of 0.8 mag: 21.9<g<22.7. The number of dwarf Cepheids in Sextans is low compared with other galaxies such as Carina, which has a strong intermediate-age population. On the other hand, the number and ratio of RR Lyrae stars to dwarf Cepheids are quite similar to those of Sculptor, a galaxy which, as Sextans, is dominated by an old stellar population. The dwarf Cepheid stars found in Sextans follow a well-constrained period-luminosity relationship with an rms=0.05 mag in the g band, which was set up by anchoring to the distance modulus given by the RR Lyrae stars. Although the majority of the variable stars in Sextans are located toward the center of the galaxy, we have found two RR Lyrae stars and one anomalous Cepheid in the outskirts of the galaxy that may be extratidal stars and suggest that this galaxy may be undergoing tidal destruction. These possible extratidal variable stars share the same proper motions as Sextans, as seen by recent Gaia measurements. Two additional stars that we initially classified as foreground RR Lyrae stars may actually be other examples of Sextans extratidal anomalous Cepheids, although radial velocities are needed to prove that scenario.
- ID:
- ivo://CDS.VizieR/J/ApJS/208/11
- Title:
- The Red MSX Source Survey: massive protostars
- Short Name:
- J/ApJS/208/11
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H II regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores.
- ID:
- ivo://CDS.VizieR/J/ApJ/784/170
- Title:
- The SEGUE K giant survey. II. Distances of 6036 stars
- Short Name:
- J/ApJ/784/170
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an online catalog of distance determinations for 6036 K giants, most of which are members of the Milky Way's stellar halo. Their medium-resolution spectra from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration are used to derive metallicities and rough gravity estimates, along with radial velocities. Distance moduli are derived from a comparison of each star's apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed (g-r)_0_ color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to properly propagate the errors in metallicities, magnitudes, and colors into distance uncertainties. We also fold in prior information about the giant-branch luminosity function and the different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays a small role in the distance estimates, but that neglecting the luminosity prior could lead to a systematic distance modulus bias of up to 0.25mag, compared to the case of using the luminosity prior. We find a median distance precision of 16%, with distance estimates most precise for the least metal-poor stars near the tip of the red giant branch. The precision and accuracy of our distance estimates are validated with observations of globular and open clusters. The stars in our catalog are up to 125kpc from the Galactic center, with 283 stars beyond 50kpc, forming the largest available spectroscopic sample of distant tracers in the Galactic halo.
- ID:
- ivo://CDS.VizieR/J/ApJ/816/80
- Title:
- The SEGUE K giant survey. III. Galactic halo
- Short Name:
- J/ApJ/816/80
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey's Sloan Extension for Galactic Understanding and Exploration (SEGUE) project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (~33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.
- ID:
- ivo://CDS.VizieR/J/AJ/156/49
- Title:
- The solar neighborhood. XLIII. New nearby stars
- Short Name:
- J/AJ/156/49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have conducted a novel search of most of the southern sky for nearby red dwarfs having low proper motions, with specific emphasis on those with {mu}<0.18"/yr, the lower cutoff of Luyten's classic proper-motion catalog. We used a tightly constrained search of the SuperCOSMOS database and a suite of photometric distance relations for photographic BRI and 2MASS JHK_s_ magnitudes to estimate distances to more than 14 million red dwarf candidates. Here we discuss 29 stars in 26 systems estimated to be within 25 pc, all of which have {mu}<0.18"/yr, that we have investigated using milliarcsecond astrometry, VRI photometry, and low-resolution spectroscopy. In total, we present the first parallaxes of 20 star systems, 9 of which are within 25 pc. We have additionally identified 14 young M dwarfs, of which 3 are new members of the nearby young moving groups, and 72 new giants, including two new carbon stars. We also present the entire catalog of 1215 sources we have identified by this means.
- ID:
- ivo://CDS.VizieR/J/AJ/154/151
- Title:
- The solar neighborhood .XXXX. New young stars
- Short Name:
- J/AJ/154/151
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- As a step toward completing and characterizing the census of the solar neighborhood, we present astrometric, photometric, and spectroscopic observations of 32 systems observed with the Cerro Tololo Inter-American Observatory 0.9 m and 1.5 m telescopes. Astrometry from the 0.9 m indicates that among the 17 systems that had no previous published trigonometric parallaxes, 14 are within 25 pc. In the full sample, nine systems have proper motions larger than 0.5"/yr, including 2MASS J02511490-0352459, which exceeds 2.0"/yr. VRI photometry from the 0.9 m and optical spectra from the 1.5 m indicate that the targets have V=11-22 mag and spectral types M3.0V-L3.0V. For 2MASS J23062928-0502285 (TRAPPIST-1), we present updated astrometry and photometric variability based on over 12 years of observations. Of the nine binaries in the sample, two promise mass determinations in the next decade: LHS 6167AB, an M4.5V system for which we present an accurate parallax placing the binary at 9.7 pc, and 2MASS J23515048-2537367AB, an M8.5V system at 21.1 pc for which we present the first evidence of an unseen, low-mass companion. Most importantly, Na I and K I gravity indicators, H{alpha} measurements, long-term photometric variability, locations on the H-R diagram, and kinematic assessments indicate that as many as 13 of the systems are young, including candidate members of young moving groups, with ages less than ~120 Myr.