- ID:
- ivo://CDS.VizieR/J/AJ/156/18
- Title:
- APOGEE DR14:Binary companions of evolved stars
- Short Name:
- J/AJ/156/18
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Multi-epoch radial velocity measurements of stars can be used to identify stellar, substellar, and planetary-mass companions. Even a small number of observation epochs can be informative about companions, though there can be multiple qualitatively different orbital solutions that fit the data. We have custom-built a Monte Carlo sampler (The Joker) that delivers reliable (and often highly multimodal) posterior samplings for companion orbital parameters given sparse radial velocity data. Here we use The Joker to perform a search for companions to 96231 red giant stars observed in the APOGEE survey (DR14) with >=3 spectroscopic epochs. We select stars with probable companions by making a cut on our posterior belief about the amplitude of the variation in stellar radial velocity induced by the orbit. We provide (1) a catalog of 320 companions for which the stellar companion's properties can be confidently determined, (2) a catalog of 4898 stars that likely have companions, but would require more observations to uniquely determine the orbital properties, and (3) posterior samplings for the full orbital parameters for all stars in the parent sample. We show the characteristics of systems with confidently determined companion properties and highlight interesting systems with candidate compact object companions.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/594/A43
- Title:
- APOGEE/Kepler sample stars abundances
- Short Name:
- J/A+A/594/A43
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The APOGEE survey has obtained high-resolution infrared spectra of more than 100,000 stars. Deriving chemical abundances patterns of these stars is paramount to piecing together the structure of the MilkyWay. While the derived chemical abundances have been shown to be precise for most stars, some calibration problems have been reported, in particular for more metal-poor stars. In this paper, we aim to (1) re-determine the chemical abundances of the APOGEE+Kepler stellar sample (APOKASC) with an independent procedure, line list and line selection, and high-quality surface gravity information from asteroseismology, and (2) extend the abundance catalogue by including abundances that are not currently reported in the most recent APOGEE release (DR12). We fixed the Teff and logg to those determined using spectrophotometric and asteroseismic techniques, respectively. We made use of the Brussels Automatic Stellar Parameter (BACCHUS) code to derive the metallicity and broadening parameters for the APOKASC sample. In addition, we derived differential abundances with respect to Arcturus.
- ID:
- ivo://CDS.VizieR/J/ApJ/819/2
- Title:
- APOGEE kinematics. I. Galactic bulge overview
- Short Name:
- J/ApJ/819/2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the stellar kinematics across the Galactic bulge and into the disk at positive longitudes from the SDSS-III APOGEE spectroscopic survey of the Milky Way. APOGEE includes extensive coverage of the stellar populations of the bulge along the midplane and near-plane regions. From these data, we have produced kinematic maps of 10000 stars across longitudes of 0{deg}<l<65{deg}, and primarily across latitudes of |b|<5{deg} in the bulge region. The APOGEE data reveal that the bulge is cylindrically rotating across all latitudes and is kinematically hottest at the very center of the bulge, with the smallest gradients in both kinematic and chemical space inside the innermost region (|l,b|)<(5{deg},5{deg}). The results from APOGEE show good agreement with data from other surveys at higher latitudes and a remarkable similarity to the rotation and dispersion maps of barred galaxies viewed edge-on. The thin bar that is reported to be present in the inner disk within a narrow latitude range of |b|<2{deg} appears to have a corresponding signature in [Fe/H] and [{alpha}/Fe]. Stars with [Fe/H]>-0.5 have dispersion and rotation profiles that are similar to that of N-body models of boxy/peanut bulges. There is a smooth kinematic transition from the thin bar and boxy bulge (|l,b|)<(15{deg},12{deg}) out to the disk for stars with [Fe/H]>-1.0, and the chemodynamics across (l,b) suggests that the stars in the inner Galaxy with [Fe/H]>-1.0 originate in the disk.
- ID:
- ivo://CDS.VizieR/J/AJ/146/156
- Title:
- APOGEE M-dwarf survey. I. First year velocities
- Short Name:
- J/AJ/146/156
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a vsini precision of ~2km/s and a measurement floor at vsini=4km/s. This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at ~100-200m/s), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsini values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to achieve a relative velocity precision floor of 50m/s for bright M dwarfs. With three or more epochs, this precision is adequate to detect substellar companions, including giant planets with short orbital periods, and flag them for higher-cadence followup. We present preliminary, and promising, results of this telluric modeling technique in this paper.
- ID:
- ivo://CDS.VizieR/J/MNRAS/460/3179
- Title:
- APOGEE stars distance and extinction
- Short Name:
- J/MNRAS/460/3179
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using a Bayesian technology, we derived distances and extinctions for over 100000 red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey by taking into account spectroscopic constraints from the APOGEE stellar parameters and photometric constraints from Two Micron All-Sky Survey, as well as a prior knowledge on the Milky Way. Derived distances are compared with those from four other independent methods, the Hipparcos parallaxes, star clusters, APOGEE red clump stars, and asteroseismic distances from APOKASC and Stromgren survey for Asteroseismology and Galactic Archaeology catalogues. These comparisons covers four orders of magnitude in the distance scale from 0.02 to 20kpc. The results show that our distances agree very well with those from other methods: the mean relative difference between our Bayesian distances and those derived from other methods ranges from -4.2 per cent to +3.6 per cent, and the dispersion ranges from 15 per cent to 25 per cent. The extinctions towards all stars are also derived and compared with those from several other independent methods: the Rayleigh-Jeans Colour Excess (RJCE) method, Gonzalez's 2D extinction map, as well as 3D extinction maps and models. The comparisons reveal that, overall, estimated extinctions agree very well, but RJCE tends to overestimate extinctions for cool stars and objects with low logg.
- ID:
- ivo://CDS.VizieR/J/AJ/156/84
- Title:
- APOGEE-2 survey of Orion Complex. II.
- Short Name:
- J/AJ/156/84
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of spectroscopic and astrometric data from APOGEE-2 and Gaia DR2 (Cat. I/345) to identify structures toward the Orion Complex. By applying a hierarchical clustering algorithm to the six-dimensional stellar data, we identify spatially and/or kinematically distinct groups of young stellar objects with ages ranging from 1 to 12 Myr. We also investigate the star-forming history within the Orion Complex and identify peculiar subclusters. With this method we reconstruct the older populations in the regions that are currently largely devoid of molecular gas, such as Orion C (which includes the {sigma} Ori cluster) and Orion D (the population that traces Ori OB1a, OB1b, and Orion X). We report on the distances, kinematics, and ages of the groups within the Complex. The Orion D group is in the process of expanding. On the other hand, Orion B is still in the process of contraction. In {lambda} Ori the proper motions are consistent with a radial expansion due to an explosion from a supernova; the traceback age from the expansion exceeds the age of the youngest stars formed near the outer edges of the region, and their formation would have been triggered when they were halfway from the cluster center to their current positions. We also present a comparison between the parallax and proper-motion solutions obtained by Gaia DR2 and those obtained toward star-forming regions by the Very Long Baseline Array.
- ID:
- ivo://CDS.VizieR/J/ApJS/236/27
- Title:
- APOGEE-2 survey of Orion Complex (OSFC). I.
- Short Name:
- J/ApJS/236/27
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Orion Star-forming Complex (OSFC) is a central target for the APOGEE-2 Young Cluster Survey. Existing membership catalogs span limited portions of the OSFC, reflecting the difficulty of selecting targets homogeneously across this extended, highly structured region. We have used data from wide-field photometric surveys to produce a less biased parent sample of young stellar objects (YSOs) with infrared (IR) excesses indicative of warm circumstellar material or photometric variability at optical wavelengths across the full 420deg^2^ extent of the OSFC. When restricted to YSO candidates with H<12.4, to ensure S/N~100 for a six-visit source, this uniformly selected sample includes 1307 IR excess sources selected using criteria vetted by Koenig & Leisawitz (2014ApJ...791..131K) and 990 optical variables identified in the Pan-STARRS1 3{pi} survey: 319 sources exhibit both optical variability and evidence of circumstellar disks through IR excess. Objects from this uniformly selected sample received the highest priority for targeting, but required fewer than half of the fibers on each APOGEE-2 plate. We filled the remaining fibers with previously confirmed and new color-magnitude selected candidate OSFC members. Radial velocity measurements from APOGEE-1 and new APOGEE-2 observations taken in the survey's first year indicate that ~90% of the uniformly selected targets have radial velocities consistent with Orion membership. The APOGEE-2 Orion survey will include >1100 bona fide YSOs whose uniform selection function will provide a robust sample for comparative analyses of the stellar populations and properties across all sub-regions of Orion.
- ID:
- ivo://CDS.VizieR/J/ApJS/239/32
- Title:
- APOKASC-2 catalog of Kepler evolved stars
- Short Name:
- J/ApJS/239/32
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalog of stellar properties for a large sample of 6676 evolved stars with Apache Point Observatory Galactic Evolution Experiment spectroscopic parameters and Kepler asteroseismic data analyzed using five independent techniques. Our data include evolutionary state, surface gravity, mean density, mass, radius, age, and the spectroscopic and asteroseismic measurements used to derive them. We employ a new empirical approach for combining asteroseismic measurements from different methods, calibrating the inferred stellar parameters, and estimating uncertainties. With high statistical significance, we find that asteroseismic parameters inferred from the different pipelines have systematic offsets that are not removed by accounting for differences in their solar reference values. We include theoretically motivated corrections to the large frequency spacing ({Delta}{nu}) scaling relation, and we calibrate the zero-point of the frequency of the maximum power ({nu}max) relation to be consistent with masses and radii for members of star clusters. For most targets, the parameters returned by different pipelines are in much better agreement than would be expected from the pipeline-predicted random errors, but 22% of them had at least one method not return a result and a much larger measurement dispersion. This supports the usage of multiple analysis techniques for asteroseismic stellar population studies. The measured dispersion in mass estimates for fundamental calibrators is consistent with our error model, which yields median random and systematic mass uncertainties for RGB stars of order 4%. Median random and systematic mass uncertainties are at the 9% and 8% level, respectively, for red clump stars.
- ID:
- ivo://CDS.VizieR/J/ApJS/215/19
- Title:
- APOKASC catalog of Kepler red giants
- Short Name:
- J/ApJS/215/19
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first APOKASC catalog of spectroscopic and asteroseismic properties of 1916 red giants observed in the Kepler fields. The spectroscopic parameters provided from the Apache Point Observatory Galactic Evolution Experiment project are complemented with asteroseismic surface gravities, masses, radii, and mean densities determined by members of the Kepler Asteroseismology Science Consortium. We assess both random and systematic sources of error and include a discussion of sample selection for giants in the Kepler fields. Total uncertainties in the main catalog properties are of the order of 80K in T_eff_, 0.06dex in [M/H], 0.014dex in logg, and 12% and 5% in mass and radius, respectively; these reflect a combination of systematic and random errors. Asteroseismic surface gravities are substantially more precise and accurate than spectroscopic ones, and we find good agreement between their mean values and the calibrated spectroscopic surface gravities. There are, however, systematic underlying trends with T_eff_ and logg. Our effective temperature scale is between 0 and 200K cooler than that expected from the infrared flux method, depending on the adopted extinction map, which provides evidence for a lower value on average than that inferred for the Kepler Input Catalog (KIC). We find a reasonable correspondence between the photometric KIC and spectroscopic APOKASC metallicity scales, with increased dispersion in KIC metallicities as the absolute metal abundance decreases, and offsets in T_eff_ and logg consistent with those derived in the literature. We present mean fitting relations between APOKASC and KIC observables and discuss future prospects, strengths, and limitations of the catalog data.
- ID:
- ivo://CDS.VizieR/VII/214
- Title:
- APS Galaxies in the North Galactic Pole
- Short Name:
- VII/214
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- (of PhD Thesis, from Minessota) I am using the Minnesota Automated Plate Scanner (APS) to construct two galaxy catalogs. The Minnesota Automated Plate Scanner Pisces-Perseus Survey (MAPS-PP) is used to search for modern-day remnant signatures of large-scale structure formation processes, specifically, galaxy alignments relative to surrounding large-scale structure. Weak evidence for such alignments is found, although the type of alignments seen don't strongly support any one large-scale structure formation model. Comparison of the MAPS-PP to pre-existing galaxy catalogs has led to the discovery that the Uppsala General Catalog and Third Reference Catalog of Galaxies exhibit a very strong measurement bias: their diameters are measured to different isophotes at different galaxy inclinations. Therefore previous determinations of the diameter function and the internal extinction properties of other galaxies (most of which have relied on one of these two galaxy catalogs) have suffered from a biased diameter measurement. I avoid this bias by using the APS data (which is obtained using automated computer-based criteria for measuring the structural properties of images digitized from photographic plates) to construct a catalog of over 200,000 galaxies within 30 degrees of the North Galactic Pole (the MAPS-NGP). The MAPS-NGP is the deepest galaxy catalog constructed over such a large area of the sky and used to re-evaluate previous investigations of the internal extinction in galaxies.