- ID:
- ivo://nasa.heasarc/skyview/co
- Title:
- CO Galactic Plane Survey
- Short Name:
- CO
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- New large-scale CO surveys of the first and second Galactic quadrants and the nearby molecular cloud complexes in Orion and Taurus, obtained with the Harvard-Smithsonian Center for Astrophysics 1.2 m telescope, have been combined with 31 other surveys obtained over the past two decades with that instrument and a similar telescope on Cerro Tololo in Chile, to produce a new composite CO survey of the entire Milky Way. The survey consists of 488,000 spectra that Nyquist or beamwidth (1/8 deg) sample the entire Galactic plane over a strip 4 deg-10 deg wide in latitude, and beamwidth or 1/4 deg sample nearly all large local clouds at higher latitudes. Compared with the previous composite CO survey of Dame et al. (1987), the new survey has 16 times more spectra, up to 3.4 times higher angular resolution, and up to 10 times higher sensitivity per unit solid angle. <P> Users should be aware that both the angular resolution and the sensitivity varies from region to region in the velocity-integrated map. The component surveys were integrated individually using clipping or moment masking in order to display nearly all statistically significant emission but little noise above a level of ~1.5 K km/s. See the reference below and the <a href="https://lweb.cfa.harvard.edu/mmw/"> Millimeter-Wave Group site</a> for more details Provenance: Data taken by two nearly-identical 1.2 m telescopes in Cambridge, MA and on Cerro Tololo, Chile combined into a complete survey of the Milky Way with CO integrated over all velocities.. This is a service of NASA HEASARC.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/860/174
- Title:
- CO in Protostars (COPS): Herschel spectroscopy
- Short Name:
- J/ApJ/860/174
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present full spectral scans from 200 to 670{mu}m of 26 Class 0+I protostellar sources obtained with Herschel-SPIRE as part of the "COPS-SPIRE" Open Time program, complementary to the DIGIT and WISH Key Programs. Based on our nearly continuous, line-free spectra from 200 to 670{mu}m, the calculated bolometric luminosities (Lbol) increase by 50% on average, and the bolometric temperatures (Tbol) decrease by 10% on average, in comparison with the measurements without Herschel. Fifteen protostars have the same class using Tbol and Lbol/Lsmm. We identify rotational transitions of CO lines from J=4->3 to J=13->12, along with emission lines of ^13^CO, HCO^+^, H_2_O, and [CI]. The ratios of ^12^CO to ^13^CO indicate that ^12^CO emission remains optically thick for J_up_<13. We fit up to four components of temperature from the rotational diagram with flexible break points to separate the components. The distribution of rotational temperatures shows a primary population around 100K with a secondary population at ~350K. We quantify the correlations of each line pair found in our data set and find that the strength of the correlation of CO lines decreases as the difference between J levels between two CO lines increases. The multiple origins of CO emission previously revealed by velocity-resolved profiles are consistent with this smooth distribution if each physical component contributes to a wide range of CO lines with significant overlap in the CO ladder. We investigate the spatial extent of CO emission and find that the morphology is more centrally peaked and less bipolar at high-J lines. We find the CO emission observed with SPIRE related to outflows, which consists of two components, the entrained gas and shocked gas, as revealed by our rotational diagram analysis, as well as the studies with velocity-resolved CO emission.
- ID:
- ivo://CDS.VizieR/J/A+A/564/A65
- Title:
- Cold gas properties of Herschel Reference Survey
- Short Name:
- J/A+A/564/A65
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new ^12^CO(1-0) observations of 59 late-type galaxies belonging to the Herschel Reference Survey (HRS), a complete K-band-selected, volume-limited (15<=D<=25Mpc) sample of nearby galaxies spanning a wide range in morphological type and luminosity. We studied different recipes to correct single-beam observations of nearby galaxies of different sizes and inclinations for aperture effects. This was done by comparing single-beam and multiple-beam observations along the major axis, which were corrected for aperture effects using different empirical or analytical prescriptions, to integrated maps of several nearby galaxies, including edge-on systems observed by different surveys. The resulting recipe is an analytical function determined by assuming that late-type galaxies are 3D exponentially declining discs with a characteristic scale length r_CO_=0.2r_24.5_, where r_24.5_ is the optical, g- (or B-) band isophotal radius at the 24.5mag/arcsec^2^ (25mag/arcsec^2^), as well as a scale height z_CO_=1/100r_24.5_. Our new CO data are then combined with those available in the literature to produce the most updated catalogue of CO observations for the HRS, now including 225 out of the 322 galaxies of the complete sample. The 3D exponential disc integration is applied to all the galaxies of the sample to measure their total CO fluxes, which are later transformed into molecular gas masses using a constant and a luminosity-dependent X_CO_ conversion factor. We also collect HI data for 315 HRS galaxies from the literature and present it in a homogenised form.
354. COLD GASS survey
- ID:
- ivo://CDS.VizieR/J/MNRAS/415/32
- Title:
- COLD GASS survey
- Short Name:
- J/MNRAS/415/32
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We are conducting COLD GASS, a legacy survey for molecular gas in nearby galaxies. Using the IRAM 30-m telescope, we measure the CO(1-0) line in a sample of ~350 nearby (D_I_~=100-200Mpc), massive galaxies (log(M*/M_{sun}_)>10.0). The sample is selected purely according to stellar mass, and therefore provides an unbiased view of molecular gas in these systems. By combining the IRAM data with Sloan Digital Sky Survey (SDSS) photometry and spectroscopy, GALEX imaging and high-quality Arecibo HI data, we investigate the partition of condensed baryons between stars, atomic gas and molecular gas in 0.1-10L* galaxies. In this paper, we present CO luminosities and molecular hydrogen masses for the first 222 galaxies. Description: To overcome this issue, the GALEX Arecibo SDSS Survey (GASS; Catinella et al. 2010, Cat. J/MNRAS/403/683) was designed to measure the neutral hydrogen content for a large, unbiased sample of ~1000 massive galaxies (M*>10^10^M_{sun}_), via longer pointed observations. GASS is a large programme currently under way at the Arecibo 305-m telescope, and is producing some of the first unbiased atomic gas scaling relations in the nearby Universe (Catinella et al. 2010, Cat. J/MNRAS/403/683; Schiminovich et al., 2010MNRAS.408..919S; Fabello et al., 2011MNRAS.411..993F). We are in the process of constructing a CO Legacy Data base for the GASS survey (COLD GASS), measuring the molecular gas content of a significant subsample of the GASS galaxies. We will then be able to quantify the link between atomic gas, molecular gas and stars in these systems.
- ID:
- ivo://CDS.VizieR/J/A+A/639/A26
- Title:
- Cold HI, H2 and total H column density FITS maps
- Short Name:
- J/A+A/639/A26
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- There are significant amounts of H_2_ in the Milky Way. Due to its symmetry H_2_ does not radiate at radio frequencies. CO is thought to be a tracer for H_2_, however CO is formed at significantly higher opacities than H_2_. Thus, toward high Galactic latitudes significant amounts of H_2_ are hidden and called CO-dark. We demonstrate that the dust-to-gas ratio is a tool to identify locations and column densities of CO-dark H_2_. We adopt the hypothesis of a constant E(B-V)/NH ratio, independent of phase transitions from HI to H_2_. We investigate the Doppler temperatures T_D_, from a Gaussian decomposition of HI4PI data, to study temperature dependencies of E(B-V)/NHI. The E(B-V)/NHI ratio in the cold HI gas phase is high in comparison to the warmer one. We consider this as evidence that cold HI gas toward high Galactic latitudes is associated with H_2_. Beyond CO-bright regions we find for T_D_<1165K a correlation (NHI+2NH_2_)/NHI{prop.to}-log T_D_. In combination with a factor XCO=4.0x10^20^cm^-2^(K.km/s)^-1^ this yields for the full-sky NH/E(B-V)~5.1 to 6.7 10^21^cm^-2^mag^-1^, compatible with X-ray scattering and UV absorption line observations. Cold HI with T_D_<1165K contains on average 46% CO-dark H_2_. Prominent filaments have T_D_<220K and typical excitation temperatures Tex~50K. With a molecular gas fraction of >61% they are dominated dynamically by H_2_.
- ID:
- ivo://CDS.VizieR/J/ApJ/697/207
- Title:
- Cold stellar stream orbit fit
- Short Name:
- J/ApJ/697/207
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use velocity and metallicity information from Sloan Digital Sky Survey and Sloan Extension for Galactic Understanding and Exploration stellar spectroscopy to fit an orbit to the narrow 63{deg} stellar stream of Grillmair and Dionatos (GD; 2006ApJ...643L..17G). The stars in the stream have a retrograde orbit with eccentricity e=0.33 (perigalacticon of 14.4kpc and apogalacticon of 28.7kpc) and inclination approximately i~35{deg}. In the region of the orbit which is detected, it has a distance of about 7-11kpc from the Sun. Assuming a standard disk plus bulge and logarithmic halo potential for the Milky Way stars plus dark matter, the stream stars are moving with a large space velocity of approximately 276km/s at perigalacticon. Using this stream alone, we are unable to determine if the dark matter halo is oblate or prolate. The metallicity of the stream is [Fe/H]=-2.1+/-0.1. Observed proper motions for individual stream members above the main sequence turnoff are consistent with the derived orbit. None of the known globular clusters in the Milky Way have positions, radial velocities, and metallicities that are consistent with being the progenitor of the GD-1 stream.
- ID:
- ivo://CDS.VizieR/J/A+A/423/755
- Title:
- Color-Induced Displacement double stars in SDSS
- Short Name:
- J/A+A/423/755
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the first successful application of the astrometric color-induced displacement technique (CID, the displacement of the photocenter between different band-passes dur to a varying contribution of differently colored components to the total light), originally proposed by Wielen (1996A&A...314..679W) for discovering unresolved binary stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/720/368
- Title:
- Color-magnitude relations of galaxies in CDFs
- Short Name:
- J/ApJ/720/368
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We extend color-magnitude relations for moderate-luminosity X-ray active galactic nucleus (AGN) hosts and non-AGN galaxies through the galaxy formation epoch (z~1-4) in the Chandra Deep Field-North and Chandra Deep Field-South (CDF-N and CDF-S, respectively; jointly CDFs) surveys. This study was enabled by the deepest available X-ray data from the 2Ms CDF surveys as well as complementary ultradeep multiwavelength data in these regions. We utilized analyses of color-magnitude diagrams (CMDs) to assess the role of moderate-luminosity AGNs in galaxy evolution.
- ID:
- ivo://CDS.VizieR/J/ApJS/243/12
- Title:
- Colors of the Outer Solar System Origins Survey
- Short Name:
- J/ApJS/243/12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Colours of the Outer Solar System Origins Survey is acquiring near-simultaneous g, r, and J photometry of unprecedented precision with the Gemini North Telescope, targeting nearly 100 trans-Neptunian objects (TNOs) brighter than m_r_=23.6mag discovered in the Outer Solar System Origins Survey. Combining the optical and near-infrared photometry with the well-characterized detection efficiency of the Colours of the Outer Solar System Origins Survey target sample will provide the first flux-limited compositional dynamical map of the outer solar system. In this paper, we describe our observing strategy and detail the data reduction processes we employ, including techniques to mitigate the impact of rotational variability. We present optical and near-infrared colors for 35 TNOs. We find two taxonomic groups for the dynamically excited TNOs, the neutral and red classes, which divide at g-r~0.75. Based on simple albedo and orbital distribution assumptions, we find that the neutral class outnumbers the red class, with a ratio of 4:1 and potentially as high as 11:1. Including in our analysis constraints from the cold classical objects, which are known to exhibit unique albedos and r-z colors, we find that within our measurement uncertainty our observations are consistent with the primordial solar system protoplanetesimal disk being neutral class dominated, with two major compositional divisions in grJ color space.
- ID:
- ivo://CDS.VizieR/J/AJ/157/94
- Title:
- Col-OSSOS: Properties of outer solar system objects
- Short Name:
- J/AJ/157/94
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Both physical and dynamical properties must be considered to constrain the origins of the dynamically excited distant solar system populations. We present high-precision (g-r) colors for 25 small (H_r_>5) dynamically excited trans-Neptunian objects (TNOs) and centaurs acquired as part of the Colours of the Outer Solar System Origins Survey. We combine our data set with previously published measurements and consider a set of 229 colors of outer solar system objects on dynamically excited orbits. The overall color distribution is bimodal and can be decomposed into two distinct classes, termed gray and red, that each has a normal color distribution. The two color classes have different inclination distributions: red objects have lower inclinations than the gray ones. This trend holds for all dynamically excited TNO populations. Even in the worst-case scenario, biases in the discovery surveys cannot account for this trend; it is intrinsic to the TNO population. Considering that TNOs are the precursors of centaurs, and that their inclinations are roughly preserved as they become centaurs, our finding solves the conundrum of centaurs being the only outer solar system population identified so far to exhibit this property. The different orbital distributions of the gray and red dynamically excited TNOs provide strong evidence that their colors are due to different formation locations in a disk of planetesimals with a compositional gradient.