- ID:
- ivo://CDS.VizieR/J/A+A/619/A180
- Title:
- Gaia DR2 photometric sensitivity curves
- Short Name:
- J/A+A/619/A180
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The second data release (DR2) from the European Space Agency mission Gaia took place on April 2018. DR2 included photometry for more than 1.3x10^9^ sources in the three bands G, G_BP_, and G_RP_. Even though the Gaia DR2 photometry is very precise, there are currently three alternative definitions of the sensitivity curves that show significative differences. The aim of this paper is to improve the quality of the input calibration data to produce new compatible definitions of the G, G_BP_, and G_RP_ bands and to identify the reasons for the discrepancies between previous definitions. We have searched the Hubble Space Telescope (HST) archive for Space Telescope Imaging Spectrograph (STIS) spectra with G430L+G750L data obtained with wide apertures and combined them with the CALSPEC library to produce a high quality spectral energy distribution (SED) library of 122 stars with a broad range of colors, including three very red stars. This library defines new sensitivity curves for G, G_BP_, and G_RP_ using a functional analytical formalism. The new sensitivity curves are significantly better than the two previous attempts we use as a reference, REV (Evans et al., 2018A&A...616A...4E, Cat. I/345) and WEI (Weiler, 2018A&A...617A.138W, Cat. J/A+A/617/A138). For G we confirm the existence of a systematic bias in magnitude and correct a color term present in REV. For G_BP_ we confirm the need to define two magnitude ranges with different sensitivity curves and measure the cut between them at G_phot_=10.87mag with a significant increase in precision. The new curves also fit the data better than either REV or WEI. For G_RP_, our new sensitivity curve fits the STIS spectra better and the differences with previous attempts reside in a systematic effect between ground-based and HST spectral libraries. Additional evidence from color-color diagrams indicate that the new sensitivity curve is more accurate. Nevertheless, there is still room for improvement in the accuracy of the sensitivity curves because of the current dearth of good-quality red calibrators: adding more to the sample should be a priority before Gaia data release 3 takes place.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/VII/285
- Title:
- Gaia DR2 quasar and galaxy classification
- Short Name:
- VII/285
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We provide probabilistic quasar and galaxy classifications for 2.7 million sources in Gaia Data Release 2. This has been achieved using a supervised classification method (Gaussian Mixture Models) based only on photometric and astrometric data (8 features) in Gaia-DR2. The model is trained empirically to classify objects into three classes - star, quasar, galaxy - for all objects with G>=14.5mag down to the Gaia magnitude limit of G=21.0mag. We provide the probabilities for being a quasar (pqso) and a galaxy (pgal); the probability of being a star is pstar = 1-(pqso+pgal), and all other Gaia data can be obtained by cross-matching Gaia-DR2 using the source identifier. As our main goal is to identify extragalactic objects, we only report objects with pqso+pgal>0.5. These probabilities incorporate a sensible class prior, namely that quasars are 500 times rarer than stars, and that galaxies 7500 times rarer than stars. See the paper for details of the purity and completeness of samples drawn from this catalogue, and for more details of its construction, contents, and validation.
- ID:
- ivo://CDS.VizieR/J/A+A/616/A7
- Title:
- Gaia DR2 radial velocity standard stars catalog
- Short Name:
- J/A+A/616/A7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Radial Velocity Spectrometer (RVS) on board the ESA satellite mission Gaia has no calibration device. Therefore, the radial velocity zero point needs to be calibrated with stars that are proved to be stable at a level of 300m/s during the Gaia observations. We compiled a dataset of ~71000 radial velocity measurements from five high-resolution spectrographs. A catalogue of 4813 stars was built by combining these individual measurements. The zero point was established using asteroids. The resulting catalogue has seven observations per star on average on a typical time baseline of 6yr, with a median standard deviation of 15m/s. A subset of the most stable stars fulfilling the RVS requirements was used to establish the radial velocity zero point provided in Gaia Data Release 2. The stars that were not used for calibration are used to validate the RVS data.
- ID:
- ivo://CDS.VizieR/J/A+A/616/A12
- Title:
- Gaia DR2 sources in GC and dSph
- Short Name:
- J/A+A/616/A12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The goal of this paper is to demonstrate the outstanding quality of the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way. We focus here on determining the proper motions of 75 Galactic globular clusters, nine dwarf spheroidal galaxies, one ultra-faint system, and the Large and Small Magellanic Clouds. Using data extracted from the Gaia archive, we derived the proper motions and parallaxes for these systems, as well as their uncertainties. We demonstrate that the errors, statistical and systematic, are relatively well understood. We integrated the orbits of these objects in three different Galactic potentials, and characterised their properties. We present the derived proper motions, space velocities, and characteristic orbital parameters in various tables to facilitate their use by the astronomical community. Our limited and straightforward analyses have allowed us for example to (i) determine absolute and very precise proper motions for globular clusters; (ii) detect clear rotation signatures in the proper motions of at least five globular clusters; (iii) show that the satellites of the Milky Way are all on high-inclination orbits, but that they do not share a single plane of motion; (iv) derive a lower limit for the mass of the Milky Way of 9.8^+6.7^_-2.7_x10^11^M_{sun}_ based on the assumption that the Leo~I dwarf spheroidal is bound; (v) derive a rotation curve for the Large Magellanic Cloud based solely on proper motions that is competitive with line-of-sight velocity curves, now using many orders of magnitude more sources; and (vi) unveil the dynamical effect of the bar on the motions of stars in the Large Magellanic Cloud. All these results highlight the incredible power of the Gaia astrometric mission, and in particular of its second data release.
- ID:
- ivo://CDS.VizieR/J/A+A/623/A110
- Title:
- Gaia DR2. Variable stars in CMD
- Short Name:
- J/A+A/623/A110
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The ESA Gaia mission provides a unique time-domain survey for more than 1.6 billion sources with G<~21mag. We showcase stellar variability in the Galactic colour-absolute magnitude diagram (CaMD).We focus on pulsating, eruptive, and cataclysmic variables, as well as on stars that exhibit variability that is due to rotation and eclipses. We describe the locations of variable star classes, variable object fractions, and typical variability amplitudes throughout the CaMD and show how variability-related changes in colour and brightness induce 'motions'. To do this, we use 22 months of calibrated photometric, spectro-photometric, and astrometric Gaia data of stars with a significant parallax. To ensure that a large variety of variable star classes populate the CaMD, we crossmatched Gaia sources with known variable stars. We also used the statistics and variability detection modules of the Gaia variability pipeline. Corrections for interstellar extinction are not implemented in this article. Gaia enables the first investigation of Galactic variable star populations in the CaMD on a similar, if not larger, scale as was previously done in the Magellanic Clouds. Although the observed colours are not corrected for reddening, distinct regions are visible in which variable stars occur. We determine variable star fractions to within the current detection thresholds of Gaia. Finally, we report the most complete description of variability-induced motion within the CaMD to date. Gaia enables novel insights into variability phenomena for an unprecedented number of stars, which will benefit the understanding of stellar astrophysics. The CaMD of Galactic variable stars provides crucial information on physical origins of variability in a way that has previously only been accessible for Galactic star clusters or external galaxies. Future Gaia data releases will enable significant improvements over this preview by providing longer time series, more accurate astrometry, and additional data types (time series BP and RP spectra, RVS spectra, and radial velocities), all for much larger samples of stars.
- ID:
- ivo://CDS.VizieR/J/MNRAS/482/4570
- Title:
- Gaia DR2 white dwarf candidates
- Short Name:
- J/MNRAS/482/4570
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalogue of white dwarf candidates selected from the second data release of Gaia (DR2). We used a sample of spectroscopically confirmed white dwarfs from the Sloan Digital Sky Survey (SDSS) to map the entire space spanned by these objects in the Gaia Hertzsprung-Russell diagram. We then defined a set of cuts in absolute magnitude, colour, and a number of Gaia quality flags to remove the majority of contaminating objects. Finally, we adopt a method analogous to the one presented in our earlier SDSS photometric catalogues to calculate a probability of being a white dwarf (PWD) for all Gaia sources which passed the initial selection. The final catalogue is composed of 486641 stars with calculated PWD from which it is possible to select a sample of~260000 high-confidence white dwarf candidates in the magnitude range 8<G<21. By comparing this catalogue with a sample of SDSS white dwarf candidates we estimate an upper limit in completeness of 85 per cent for white dwarfs with G<=20mag and Teff>7000K, at high Galactic latitudes (|b|>20deg). However, the completeness drops at low Galactic latitudes, and the magnitude limit of the catalogue varies significantly across the sky as a function of Gaia's scanning law. We also provide the list of objects within our sample with available SDSS spectroscopy.
- ID:
- ivo://CDS.VizieR/II/360
- Title:
- Gaia DR2 x AllWISE catalogue
- Short Name:
- II/360
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The second Gaia Data Release (DR2) contains astrometric and photometric data for more than 1.6 billion objects with mean Gaia G magnitude <20.7, including many Young Stellar Objects (YSOs) in different evolutionary stages. In order to explore the YSO population of the Milky Way, we combined the Gaia DR2 database with WISE and Planck measurements and made an all-sky probabilistic catalogue of YSOs using machine learning techniques, such as Support Vector Machines, Random Forests, or Neural Networks. Our input catalogue contains 103 million objects from the DR2xAllWISE cross-match table. We classified each object into four main classes: YSOs, extragalactic objects, main-sequence stars and evolved stars. At a 90% prob- ability threshold we identified 1 129 295 YSO candidates. To demonstrate the quality and potential of our YSO catalogue, here we present two applications of it. (1) We explore the 3D structure of the Orion A star forming complex and show that the spatial distribution of the YSOs classified by our procedure is in agreement with recent results from the literature. (2) We use our catalogue to classify published Gaia Science Alerts. As Gaia measures the sources at multiple epochs, it can efficiently discover transient events, including sudden brightness changes of YSOs caused by dynamic processes of their circumstellar disk. However, in many cases the physical nature of the published alert sources are not known. A cross-check with our new catalogue shows that about 30% more of the published Gaia alerts can most likely be attributed to YSO activity. The catalogue can be also useful to identify YSOs among future Gaia alerts.
- ID:
- ivo://CDS.VizieR/J/A+A/649/A3
- Title:
- Gaia Early Data Release 3 photometric passbands
- Short Name:
- J/A+A/649/A3
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Gaia Early Data Release 3 (Gaia EDR3) contains astrometry and photometry results for about 1.8 billion sources based on observations collected by the European Space Agency Gaia satellite during the first 34 months of its operational phase. In this paper, we focus on the photometric content, describing the input data, the algorithms, the processing, and the validation of the results. Particular attention is given to the quality of the data and to a number of features that users may need to take into account to make the best use of the Gaia EDR3 catalogue. The processing broadly followed the same procedure as for Gaia DR2, but with significant improvements in several aspects of the blue and red photometer (BP and RP) preprocessing and in the photometric calibration process. In particular, the treatment of the BP and RP background has been updated to include a better estimation of the local background, and the detection of crowding effects has been used to exclude affected data from the calibrations. The photometric calibration models have also been updated to account for flux loss over the whole magnitude range. Significant improvements in the modelling and calibration of the Gaia point and line spread functions have also helped to reduce a number of instrumental effects that were still present in DR2. Gaia EDR3 contains 1.806 billion sources with G-band photometry and 1.540 billion sources with GBP and GRP photometry. The median uncertainty in the G-band photometry, as measured from the standard deviation of the internally calibrated mean photometry for a given source, is 0.2mmag at magnitude G=10 to 14, 0.8mmag at G~17, and 2.6mmag at G~19. The significant magnitude term found in the Gaia DR2 photometry is no longer visible, and overall there are no trends larger than 1mmag/mag. Using one passband over the whole colour and magnitude range leaves no systematics above the 1% level in magnitude in any of the bands, and a larger systematic is present for a very small sample of bright and blue sources. A detailed description of the residual systematic effects is provided. Overall the quality of the calibrated mean photometry in Gaia EDR3 is superior with respect to DR2 for all bands.
599. Gaia EDR3
- ID:
- ivo://CDS.VizieR/I/350
- Title:
- Gaia EDR3
- Short Name:
- I/350
- Date:
- 18 Jan 2022 09:31:17
- Publisher:
- CDS
- Description:
- Gaia DR3 data (both Gaia EDR3 and the full Gaia DR3) are based on data collected between 25 July 2014 (10:30 UTC) and 28 May 2017 (08:44 UTC), spanning a period of 34 months. As a comparison, Gaia DR2 was based on 22 months of data and Gaia DR1 was based on observations collected during the first 14 months of Gaia's routine operational phase. Survey completeness: The Gaia EDR3 catalogue is essentially complete between G=12 and G=17. The source list for the release is incomplete at the bright end and has an ill-defined faint magnitude limit, which depends on celestial position. The combination of the Gaia scan law coverage and the filtering on data quality which will be done prior to the publication of Gaia EDR3, does lead to some regions of the sky displaying source density fluctuations that reflect the scan law pattern. In addition, small gaps exist in the source distribution, for instance close to bright stars. Astrometry: The parallax improvement is typically 20% with respect to Gaia DR2. The proper motions are typically a factor two better than in Gaia DR2. An overall reduction of systematics has been achieved. E.g., the parallax zero point deduced from the extragalactic sources is about -20{mu}as. A tentative correction formula for the parallax zero point will be provided. Closer to the release date of Gaia Early Data Release 3, an update will be given on the astrometry. Photometry: The G-band photometric uncertainties are ~0.25mmag for G<13, 1mmag at G=17, and 5mmag at G=20mag. The GBP-band photometric uncertainties are ~1mmag for G<13, 10mmag at G=17, and 100mmag at G=20mag. The GRP-band photometric uncertainties are ~1mmag for G<13, 5mmag at G=17, and 50mmag at G=20mag. Closer to the release date of Gaia Early Data Release 3, an update will be given on the photometry. Gaia EDR3 does not contain new radial velocities. The radial velocities of Gaia Data Release 2 have been added to Gaia EDR3 in order to ease the combination of spectrosopic and astrometric data. Radial velocities: Gaia EDR3 hence contains Gaia DR2 median radial velocities for about 7.21 million stars with a mean G magnitude between ~4 and ~13 and an effective temperature (Teff) in the range ~3550 to 6900K. The overall precision of the radial velocities at the bright end is of the order of ~200-300m/s while at the faint end, the overall precision is ~1.2km/s for a Teff of 4750K and ~3.5km/s for a Teff of 6500K. Before publication in Gaia EDR3, an additional filtering has been performed onto the Gaia DR2 radial velocities to remove some 4000 sources that had wrong radial velocities. Please be aware that the Gaia DR2 values are assigned to the Gaia EDR3 sources through an internal cross-match operation. In total, ~10000 Gaia DR2 radial velocities could not be associated to a Gaia EDR3 source. Astrophysical parameters: Gaia EDR3 does not contain new astrophysical parameters. Astrophysical parameters have been published in Gaia DR2 and a new set is expected to be released with the full Gaia DR3 release. Variable stars: Gaia EDR3 does not contain newly classified variable stars. For the overview of the currently available variable stars from Gaia DR2, have a look here. Classifications for a larger set of variable stars are expected with the full Gaia DR3 release. Solar system objects: A large set of solar system objects with orbits will become available with the full Gaia DR3 release. Information on the currently available asteroids in Gaia DR2 can be found here. Documentation: Data release documentation is provided along with each data release in the form of a downloadable PDF and a webpage. The various chapters of the documentation have been indexed at ADS allowing them to be cited. Please visit the Gaia Archive (https://gea.esac.esa.int/archive) to access this documentation, and make sure to check out all relevant information given through the documentation overview page (https://www.cosmos.esa.int/web/gaia-users/archive).
- ID:
- ivo://CDS.VizieR/J/A+A/598/A5
- Title:
- Gaia-ESO Survey iDR4 calibrators
- Short Name:
- J/A+A/598/A5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Gaia-ESO survey (GES) is now in its fifth and last year of observations and has produced tens of thousands of high-quality spectra of stars in all Milky Way components. This paper presents the strategy behind the selection of astrophysical calibration targets, ensuring that all GES results on radial velocities, atmospheric parameters, and chemical abundance ratios will be both internally consistent and easily comparable with other literature results, especially from other large spectroscopic surveys and from Gaia. The calibration of GES is particularly delicate because of (i) the large space of parameters covered by its targets, ranging from dwarfs to giants, from O to M stars; these targets have a large wide of metallicities and also include fast rotators, emission line objects, and stars affected by veiling; (ii) the variety of observing setups, with different wavelength ranges and resolution; and (iii) the choice of analyzing the data with many different state-of-the-art methods, each stronger in a different region of the parameter space, which ensures a better understanding of systematic uncertainties. An overview of the GES calibration and homogenization strategy is also given, along with some examples of the usage and results of calibrators in GES iDR4, which is the fourth internal GES data release and will form the basis of the next GES public data release. The agreement between GES iDR4 recommended values and reference values for the calibrating objects are very satisfactory. The average offsets and spreads are generally compatible with the GES measurement errors, which in iDR4 data already meet the requirements set by the main GES scientific goals.