- ID:
- ivo://CDS.VizieR/J/other/RAA/15.1392
- Title:
- LAMOST globular clusters in M 31 and M 33
- Short Name:
- J/other/RAA/15.1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalog of 908 objects observed with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) in fields in the vicinity of M31 and M33, targeted as globular clusters (GCs) and candidates. The targets include known GCs and candidates selected from the literature, as well as new candidates selected from the Sloan Digital Sky Survey (SDSS). Analysis shows that 356 of them are likely GCs with various confidence levels, while the remaining ones turn out to be background galaxies and quasars, stars and HII regions in M31 or foreground Galactic stars. The 356 likely GCs include 298 bona fide GCs and 26 candidates known in the literature. Three candidates, selected from the Revised Bologna Catalog of M31 GCs and candidates (RBC) and one possible cluster from Johnson et al.(2012, Cat. J/ApJ/752/95), are confirmed to be bona fide clusters. We search for new GCs in the halo of the M31 among the new candidates selected from the SDSS photometry. Based on radial velocities yielded by LAMOST spectra and visual examination of the SDSS images, we find 28 objects, 5 bona fide and 23 likely GCs. Among the five bona fide GCs, three have been recently discovered independently by others, and the remaining 25 are our new identifications, including two bona fide ones. The newly identified objects fall at projected distances ranging from 13 to 265kpc from M31. Of the two newly discovered bona fide GCs, one is located near M33, probably a GC belonging to M33. The other bona fide GC falls on the Giant Stream with a projected distance of 78kpc from M31. Of the 23 newly identified likely GCs, one has a projected distance of about 265kpc from M31 and could be an intergalactic cluster.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/145/159
- Title:
- LAMOST. II. ugriz photometry of 526 new quasars
- Short Name:
- J/AJ/145/159
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new quasars discovered in the vicinity of the Andromeda and Triangulum galaxies with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, also named the Guoshoujing Telescope, during the 2010 and 2011 observational seasons. Quasar candidates are selected based on the available Sloan Digital Sky Survey, Kitt Peak National Observatory 4m telescope, Xuyi Schmidt Telescope Photometric Survey optical, and Wide-field Infrared Survey Explorer near-infrared photometric data. We present 509 new quasars discovered in a stripe of ~135deg^2^ from M31 to M33 along the Giant Stellar Stream in the 2011 pilot survey data sets, and also 17 new quasars discovered in an area of ~100 deg^2^ that covers the central region and the southeastern halo of M31 in the 2010 commissioning data sets. These 526 new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to 3.2. They represent a significant increase of the number of identified quasars in the vicinity of M31 and M33. There are now 26, 62, and 139 known quasars in this region of the sky with i magnitudes brighter than 17.0, 17.5, and 18.0, respectively, of which 5, 20, and 75 are newly discovered. These bright quasars provide an invaluable collection with which to probe the kinematics and chemistry of the interstellar/intergalactic medium in the Local Group of galaxies. A total of 93 quasars are now known with locations within 2.5{deg} of M31, of which 73 are newly discovered. Tens of quasars are now known to be located behind the Giant Stellar Stream, and hundreds are behind the extended halo and its associated substructures of M31. The much enlarged sample of known quasars in the vicinity of M31 and M33 can potentially be utilized to construct a perfect astrometric reference frame to measure the minute proper motions (PMs) of M31 and M33, along with the PMs of substructures associated with the Local Group of galaxies. Those PMs are some of the most fundamental properties of the Local Group.
- ID:
- ivo://CDS.VizieR/J/ApJS/251/15
- Title:
- LAMOST-Kepler/K2 survey (LK-MRS) first year obs.
- Short Name:
- J/ApJS/251/15
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Phase II of the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST)-Kepler/K2 survey (LK-MRS), initiated in 2018, aims at collecting medium-resolution spectra (R~7500; hereafter MRS) for more than 50000 stars with multiple visits (~60 epochs) over a period of 5yr (2018 September to 2023 June). We selected 20 footprints distributed across the Kepler field and six K2 campaigns, with each plate containing a number of stars ranging from ~2000 to ~3000. During the first year of observations, the LK-MRS has already visited 13 plates 223 times over 40 individual nights, and collected ~280000 and ~369000 high-quality spectra in the blue and red wavelength ranges, respectively. The atmospheric parameters and radial velocities for ~259000 spectra of 21053 targets were successfully calculated by the LAMOST stellar parameter pipeline. The internal uncertainties for the effective temperature, surface gravity, metallicity, and radial velocity are found to be 100K, 0.15dex, 0.09dex, and 1.00km/s, respectively, when derived from a medium-resolution LAMOST spectrum with a signal-to-noise ratio (S/N) in the g band of 10. All of the uncertainties decrease as S/N increases, but they stabilize for S/N>100. We found 14997, 20091, and 1514 stars in common with the targets from the LAMOST low-resolution survey (LRS), Gaia, and the Apache Point Observatory Galactic Evolution Experiment (APOGEE), respectively, corresponding to fractions of ~70%, ~95%, and ~7.2%. In general, the parameters derived from LK-MRS spectra are consistent with those obtained from the LRS and APOGEE spectra, but the scatter increases as the surface gravity decreases when comparing with the measurements from APOGEE. A large discrepancy is found with the Gaia values of the effective temperature. Comparisons of the radial velocities of LK-MRS to Gaia and LK-MRS to APOGEE nearly follow a Gaussian distribution with means of {mu}~1.10 and 0.73km/s, respectively. We expect that the results from the LK-MRS spectra will shed new light on binary stars, asteroseismology, stellar activity, and other research fields.
- ID:
- ivo://CDS.VizieR/J/AJ/151/13
- Title:
- LAMOST-Kepler MKCLASS spectral classification
- Short Name:
- J/AJ/151/13
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The LAMOST-Kepler project was designed to obtain high-quality, low-resolution spectra of many of the stars in the Kepler field with the Large Sky Area Multi Object Fiber Spectroscopic Telescope (LAMOST) spectroscopic telescope. To date 101086 spectra of 80447 objects over the entire Kepler field have been acquired. Physical parameters, radial velocities, and rotational velocities of these stars will be reported in other papers. In this paper we present MK spectral classifications for these spectra determined with the automatic classification code MKCLASS. We discuss the quality and reliability of the spectral types and present histograms showing the frequency of the spectral types in the main table organized according to luminosity class. Finally, as examples of the use of this spectral database, we compute the proportion of A-type stars that are Am stars, and identify 32 new barium dwarf candidates.
- ID:
- ivo://CDS.VizieR/J/A+A/594/A39
- Title:
- LAMOST-Kepler parameters and activity indicators
- Short Name:
- J/A+A/594/A39
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A comprehensive and homogeneous determination of stellar parameters for the stars observed by the Kepler space telescope is necessary for statistical studies of their properties. As a result of the large number of stars monitored by Kepler, the largest and more complete databases of stellar parameters published to date are multiband photometric surveys. The LAMOST-Kepler survey, whose spectra are analyzed in the present paper, was the first large spectroscopic project, which started in 2011 and aimed at filling that gap. In this work we present the results of our analysis, which is focused on selecting spectra with emission lines and chromospherically active stars by means of the spectral subtraction of inactive templates. The spectroscopic determination of the atmospheric parameters for a large number of stars is a by-product of our analysis. We have used a purposely developed version of the code ROTFIT for the determination of the stellar parameters by exploiting a wide and homogeneous collection of real star spectra, namely the Indo US library. We provide a catalog with the atmospheric parameters (Teff, logg, and [Fe/H]), radial velocity (RV), and an estimate of the projected rotation velocity (vsini). For cool stars (Teff<6000K), we also calculated the H-alpha and CaII-IRT fluxes, which are important proxies of chromospheric activity. We have derived the RV and atmospheric parameters for 61753 spectra of 51385 stars. The average uncertainties, which we estimate from the stars observed more than once, are about 12km/s, 1.3%, 0.05dex, and 0.06dex for RV, Teff, logg, and [Fe/H], respectively, although they are larger for the spectra with a very low signal-to-noise ratio. Literature data for a few hundred stars (mainly from high-resolution spectroscopy) were used to peform quality control of our results. The final accuracy of the RV is about 14km/s. The accuracy of the Teff, logg, and [Fe/H] measurements is about 3.5%, 0.3dex, and 0.2dex, respectively. However, while the Teff values are in very good agreement with the literature, we noted some issues with the determination of [Fe/H] of metal poor stars and the tendency, for logg, to cluster around the values typical for main-sequence and red giant stars. We propose correction relations based on these comparisons and we show that this does not have a significant effect on the determination of the chromospheric fluxes. The RV distribution is asymmetric and shows an excess of stars with negative RVs that are larger at low metallicities. Despite the rather low LAMOST resolution, we were able to identify interesting and peculiar objects, such as stars with variable RV, ultrafast rotators, and emission-line objects. Based on the H-alpha and CaII-IRT fluxes, we found 442 chromospherically active stars, one of which is a likely accreting object. The availability of precise rotation periods from the Kepler photometry allowed us to study the dependency of these chromospheric fluxes on the rotation rate for a very large sample of field stars.
- ID:
- ivo://CDS.VizieR/J/other/RAA/15.1424
- Title:
- LAMOST luminous infrared galaxies
- Short Name:
- J/other/RAA/15.1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of 64 luminous infrared galaxies, based on new observations of 20 square degrees from the LAMOST Complete Spectroscopic Survey of Pointing Area at the Southern Galactic Cap and the WISE 22um catalog from the AllWISE Data Release. Half of them are classified as late-type spirals and the others are classified as peculiar/compact galaxies. The peculiar/compact galaxies tend to exhibit higher luminosities and lower stellar masses. We also separate AGNs from HII galaxies in a simple way by examining LAMOST spectra. Those cases show that host AGNs are easily distinguished from others in the mid-infrared color-color diagrams.
- ID:
- ivo://CDS.VizieR/J/other/RAA/15.1438
- Title:
- LAMOST new QSOs in M31 and M33 vicinity
- Short Name:
- J/other/RAA/15.1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this work, we report new quasars discovered in fields in the vicinity of the Andromeda (M31) and Triangulum (M33) galaxies with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) during the 2013 observational season, the second year of the regular survey. In total, 1330 new quasars are discovered in an area of ~133{deg}^2^ around M31 and M33. With i magnitudes ranging from 14.79 to 20.0 and redshifts from 0.08 to 4.85, the 1330 new quasars represent a significant increase in the number of identified quasars in fields in the vicinity of M31 and M33. Up to now, there have been a total of 1870 quasars discovered by LAMOST in this area. The much enlarged sample of known quasars in this area can potentially be utilized to construct a precise astrometric reference frame for the measurement of minute proper motions of M31, M33 and their associated substructures, which are vital for understanding the formation and evolution of M31, M33 and the Local Group of galaxies. Moreover, in the sample, there are a total of 45, 98 and 225 quasars with i magnitudes brighter than 17.0, 17.5 and 18.0 respectively. In the aforementioned brightness bins, 15, 35 and 84 quasars are reported here for the first time, and 6, 21 and 81 are reported in our previous work. In addition, 0, 1 and 6 are from the Sloan Digital Sky Survey and 24, 41 and 54 are from the NED database. These bright quasars provide an invaluable sample to study the kinematics and chemistry of the interstellar/intergalactic medium of the Local Group.
- ID:
- ivo://CDS.VizieR/J/AJ/155/189
- Title:
- LAMOST Quasar Survey: quasar properties from DR2&3
- Short Name:
- J/AJ/155/189
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This is the second installment for the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) Quasar Survey, which includes quasars observed from 2013 September to 2015 June. There are 9024 confirmed quasars in DR2 and 10911 in DR3. After cross-match with the Sloan Digital Sky Survey (SDSS) quasar catalogs and NED, 12126 quasars are discovered independently. Among them, 2225 quasars were released by SDSS DR12 QSO catalog in 2014 after we finalized the survey candidates. 1801 sources were identified by SDSS DR14 as QSOs. The remaining 8100 quasars are considered as newly founded, and among them, 6887 quasars can be given reliable emission line measurements and the estimated black hole masses. Quasars found in LAMOST are mostly located at low-to-moderate redshifts, with a mean value of 1.5. The highest redshift observed in DR2 and DR3 is 5. We applied emission line measurements to H{alpha}, H{beta}, Mg II, and C IV. We deduced the monochromatic continuum luminosities using photometry data, and estimated the virial black hole masses for the newly discovered quasars. Results are compiled into a quasar catalog, which will be available online.
- ID:
- ivo://CDS.VizieR/J/AJ/151/24
- Title:
- LAMOST quasar survey: quasar properties from the DR1
- Short Name:
- J/AJ/151/24
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present preliminary results of the quasar survey in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) first data release (DR1), which includes the pilot survey and the first year of the regular survey. There are 3921 quasars reliably identified, among which 1180 are new quasars discovered in the survey. These quasars are at low to median redshifts, with a highest z of 4.83. We compile emission line measurements around the H{alpha}, H{beta}, Mg II, and C IV regions for the new quasars. The continuum luminosities are inferred from SDSS photometric data with model fitting, as the spectra in DR1 are non-flux-calibrated. We also compile the virial black hole mass estimates, with flags indicating the selection methods, and broad absorption line quasars. The catalog and spectra for these quasars are also available. Of the 3921 quasars, 28% are independently selected with optical-infrared colors, indicating that the method is quite promising for the completeness of the quasar survey. LAMOST DR1 and the ongoing quasar survey will provide valuable data for studies of quasars.
- ID:
- ivo://CDS.VizieR/J/MNRAS/366/645
- Title:
- LARCS. 11 X-ray luminous clusters
- Short Name:
- J/MNRAS/366/645
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the analysis of the spectroscopic and photometric catalogues of 11 X-ray luminous clusters at 0.07<z<0.16 from the Las Campanas/Anglo-Australian Telescope Rich Cluster Survey. Our spectroscopic data set consists of over 1600 galaxy cluster members, of which two-thirds are outside r_200_. These spectra allow us to assign cluster membership using a detailed mass model and expand on our previous work on the cluster colourmagnitude relation (CMR) where membership was inferred statistically.