We have investigated the far- through mid-UV (1150-2360{AA}) spectrum of {eta} Carinae during the late stages of its broad maximum using the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) moderate dispersion echelle modes. The {eta} Car spectrum is a mixture of absorption and emission lines from the surrounding nebula superimposed on broad stellar wind features. This paper provides a description of the observed spectrum including the wind features, the interstellar absorption, and the emission spectrum from the surrounding nebula, but with the emphasis on the absorption spectrum formed in the foreground ejecta. The ejecta absorption spectrum has a complicated velocity structure in which two velocity structures, at -146 and -513km/s, are easily distinguished.The complete spectrum, with nebular and interstellar line identifications, is available in the electronic edition of the paper.
We present Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) high-resolution near-ultraviolet (NUV) spectra of Car's central source recorded before, during and after the 2003.5 spectroscopic minimum. Our focus is on the narrow absorption lines formed in multiple circumstellar shells, superimposed on the broad P Cygni stellar wind features, and how they respond to the flux variations of Car across the minimum. Over 30 separate narrow-line velocity components are identified: three around 146km/s, many between 323 and 587km/s, and a few exceeding 1000km/s.
In order to develop and test a methodology to search for UV variability over the entire Galaxy Evolution Explorer (GALEX) database down to the shortest timescales, we analyzed time-domain photometry of ~5000 light curves of ~300 bright (mFUV, mNUV<=14) and blue (mFUV-mNUV<0) GALEX sources. Using the gPhoton database tool, we discovered and characterized instrumentally induced variabilities in time-resolved GALEX photometry that may severely impact automated searches for short-period variations. The most notable artifact is a quasi-sinusoidal variation mimicking light curves typical of pulsators, seen occasionally in either one or both detectors, with amplitudes of up to 0.3mag and periods corresponding to the periodicity of the spiral dithering pattern used during the observation (P~120s). Therefore, the artifact may arise from small-scale response variations. Other artifacts include visit-long "sagging" or "hump" in flux, occurring when the dithering pattern is not a spiral, or a one-time change in flux level during the exposure. These instrumentally caused variations were not reported before, and are not due to known (and flagged) artifacts such as hotspots, which can be easily eliminated. To characterize the frequency and causality of such artifacts, we apply Fourier transform analysis to both light curves and dithering patterns, and examine whether artificial brightness variations correlate with visit or instrumental parameters. Artifacts do not correlate with source position on the detector. We suggest methods to identify artifact variations and to correct them when possible.
Eta Carinae is a massive interacting binary system shrouded in a complex circumstellar environment whose evolution is the source of the long-term brightening observed during the last 80yr. An occulter, acting as a natural coronagraph, impacts observations from our perspective, but not from most other directions. Other sight-lines are visible to us through studies of the Homunculus reflection nebula. The coronagraph appears to be vanishing, decreasing the extinction towards the central star, and causing the star's secular brightening. In contrast, the Homunculus remains at an almost constant brightness. The coronagraph primarily suppresses the stellar continuum, to a lesser extent the wind lines, and not the circumstellar emission lines. This explains why the absolute values of equivalent widths (EWs) of the emission lines in our direct view are larger than those seen in reflected by the Homunculus, why the direct view absolute EWs are decreasing with time, and why lower-excitation spectral wind lines formed at larger radii (e.g FeII 4585{AA}) decrease in intensity at a faster pace than higher excitation lines that form closer to the star (e.g. H{delta}). Our main result is that the star, despite its 10-fold brightening over two decades, is relatively stable. A vanishing coronagraph that can explain both the large flux evolution and the much weaker spectral evolution. This is contrary to suggestions that the long-term variability is intrinsic to the primary star that is still recovering from the Great Eruption with a decreasing mass-loss rate and a polar wind that is evolving at a slower pace than at the equator.
We present the first cross-identifications of sources in the near-infrared DENIS survey and in the micro-lensing EROS survey in a field of about 0.5 square degrees around the optical center (OC) of the Large Magellanic Cloud. We analyze the photometric history of these stars in the EROS data base and obtain light-curves for about 800 variables. Most of the stars are long period variables (Miras and Semi-Regulars); a few Cepheids are also present. We also present new spectroscopic data on 126 asymptotic giant branch stars in the OC field, 30 previously known and 96 newly discovered by the DENIS survey. The visible spectra are used to assign a carbon- (C-) or oxygen-rich (O-rich) nature to the observed stars on the basis of the presence of molecular bands of TiO, VO, CN, C_2_. For the remaining of the stars we used the (J-K_S_) color to determine whether they are O-rich or C-rich. Plotting Log(period) versus K_S_ we find three very distinct period-luminosity relations, mainly populated by Semi-Regular stars of type a (SRa), b (SRb) and Mira variables. Carbon-rich stars occupy mostly the upper part of these relations. We find that 65% of the asymptotic giant branch population are long period variables (LPVs).
We present an improved method for automated stellar variability classification, using fundamental parameters derived from high resolution spectra, with the goal to improve the variability classification obtained using information derived from CoRoT light curves only. Although we focus on Giraffe spectra and CoRoT light curves in this work, the methods are much more widely applicable. In order to improve the variability classification obtained from the photometric time series, only rough estimates of the stellar physical parameters (Teff and logg) are needed because most variability types that overlap in the space of time series parameters, are well separated in the space of physical parameters (e.g. {gamma} Dor/SPB or {delta} Sct/{beta} Cep). In this work, several state-of-the-art machine learning techniques are combined to estimate these fundamental parameters from high resolution Giraffe spectra. Next, these parameters are used in a multi-stage Gaussian-Mixture classifier to perform an improved supervised variability classification of CoRoT light curves. The variability classifier can be used independently of the regression module that estimates the physical parameters, so that non-spectroscopic estimates derived e.g. from photometric colour indices can be used instead. Teff and logg are derived from Giraffe spectra, for 6832 CoRoT targets. The use of those parameters in addition to information extracted from the CoRoT light curves, significantly improves the results of our previous automated stellar variability classification. Several new pulsating stars are identified with high confidence levels, including hot pulsators such as SPB and {beta} Cep, and several {gamma} Dor-{delta} Sct hybrids. From our samples of new {gamma} Dor and {delta} Sct stars, we find strong indications that the instability domains for both types of pulsators are larger than previously thought.
The Taiwanese-American Occultation Survey project is designed for the detection of stellar occultations by small-size Kuiper Belt Objects, and it has monitored selected fields along the ecliptic plane by using four telescopes with a 3deg^2^ field of view on the sky since 2005. We have analyzed data accumulated during 2005-2012 to detect variable stars. Sixteen fields with observations of more than 100 epochs were examined. We recovered 85 variables among a total of 158 known variable stars in these 16 fields. Most of the unrecovered variables are located in the fields observed less frequently. We also detected 58 variable stars which are not listed in the International Variable Star Index of the American Association of Variable Star Observers. These variable stars are classified as 3 RR Lyrae, 4 Cepheid, 1 {delta} Scuti, 5 Mira, 15 semi-regular, and 27 eclipsing binaries based on the periodicity and the profile of the light curves.
The Kepler spacecraft is providing time series of photometric data with micromagnitude precision for hundreds of A-F type stars. We present a first general characterization of the pulsational behaviour of A-F type stars as observed in the Kepler light curves of a sample of 750 candidate A-F type stars, and observationally investigate the relation between {gamma} Doradus ({gamma} Dor), {delta} Scuti ({delta} Sct), and hybrid stars.