- ID:
- ivo://CDS.VizieR/J/ApJ/748/68
- Title:
- WISE IR colors of gamma-ray blazars
- Short Name:
- J/ApJ/748/68
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Blazars constitute the most enigmatic class of extragalactic {gamma}-ray sources, and their observational features have been ascribed to a relativistic jet closely aligned to the line of sight. They are generally divided in two main classes: the BL Lac objects (BL Lacs) and the flat-spectrum radio quasars (FSRQs). In the case of BL Lacs the double-bumped spectral energy distribution (SED) is generally described by the synchrotron self-Compton (SSC) emission, while for the FSRQs it is interpreted as due to external Compton (EC) emission. Recently, we showed that in the [3.4]-[4.6]-[12]{mu}m color-color diagram the blazar population covers a distinct region (i.e., the WISE blazar Strip (WBS)) clearly separated from the other extragalactic sources that are dominated by thermal emission. In this paper, we investigate the relation between the infrared and {gamma}-ray emission for a subset of confirmed blazars from the literature, associated with Fermi sources, for which WISE archival observations are available. This sample is a proper subset of the sample of sources used previously, and the availability of Fermi data is critical to constrain the models on the emission mechanisms for the blazars.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/837/15
- Title:
- WISE IR excesses among main sequence stars
- Short Name:
- J/ApJ/837/15
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This study presents a search for infrared (IR) excess in the 3.4, 4.6, 12, and 22{mu}m bands in a sample of 216 targets, composed of solar sibling, twin, and analog stars observed by the Wide-field Infrared Survey Explorer (WISE) mission. In general, an IR excess suggests the existence of warm dust around a star. We detected 12{mu}m and/or 22{mu}m excesses at the 3{sigma} level of confidence in five solar analog stars, corresponding to a frequency of 4.1% of the entire sample of solar analogs analyzed, and in one out of 29 solar sibling candidates, confirming previous studies. The estimation of the dust properties shows that the sources with IR excesses possess circumstellar material with temperatures that, within the uncertainties, are similar to that of the material found in the asteroid belt in our solar system. No photospheric flux excess was identified at the W1 (3.4{mu}m) and W2 (4.6{mu}m) WISE bands, indicating that, in the majority of stars of the present sample, no detectable dust is generated. Interestingly, among the 60 solar twin stars analyzed in this work, no WISE photospheric flux excess was detected. However, a null-detection excess does not necessarily indicate the absence of dust around a star because different causes, including dynamic processes and instrument limitations, can mask its presence.
- ID:
- ivo://CDS.VizieR/J/ApJS/212/10
- Title:
- WISE IR excesses for stars within 75pc
- Short Name:
- J/ApJS/212/10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a sensitive search for WISE W3 (12{mu}m) and W4 (22{mu}m) excesses from warm optically thin dust around Hipparcos main sequence stars within 75pc from the Sun. We use contemporaneously measured photometry from WISE, remove sources of contamination, and derive and apply corrections to saturated fluxes to attain optimal sensitivity to >10{mu}m excesses. We use data from the WISE All-Sky Survey Catalog rather than the AllWISE release because we find that its saturated photometry is better behaved, allowing us to detect small excesses even around saturated stars in WISE. Our new discoveries increase by 45% the number of stars with warm dusty excesses and expand the number of known debris disks (with excess at any wavelength) within 75pc by 29%. We identify 220 Hipparcos debris disk host stars, 108 of which are new detections at any wavelength. We present the first measurement of a 12{mu}m and/or 22{mu}m excess for 10 stars with previously known cold (50-100K) disks. We also find five new stars with small but significant W3 excesses, adding to the small population of known exozodi, and we detect evidence for a W2 excess around HIP 96562 (F2V), indicative of tenuous hot (780K) dust. As a result of our WISE study, the number of debris disks with known 10-30{mu}m excesses within 75pc (379) has now surpassed the number of disks with known >30{mu}m excesses (289, with 171 in common), even if the latter have been found to have a higher occurrence rate in unbiased samples.
- ID:
- ivo://CDS.VizieR/J/A+A/582/A74
- Title:
- WISE J072543.88-235119.7 line abundances
- Short Name:
- J/A+A/582/A74
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The lithium abundance in turnoff stars of the old population of our Galaxy is remarkably constant in the metallicity interval -2.8<[Fe/H]<-2.0, defining a plateau. The Li abundance of these turnoff stars is clearly lower than the abundance predicted by the primordial nucleosynthesis in the frame of the standard Big Bang nucleosynthesis. Different scenarios have been proposed for explaining this discrepancy, along with the very low scatter of the lithium abundance around the plateau. The recently identified very high velocity star, WISE.J0725.2351 appears to belong to the old Galactic population, and appears to be an extreme halo star on a bound, retrograde Galactic orbit. In this paper, we study the abundance ratios and, in particular the lithium abundance, in this star. The available spectra (ESO-Very Large Telescope) are analyzed and the abundances of Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Sr and Ba are determined.
- ID:
- ivo://CDS.VizieR/J/ApJS/213/25
- Title:
- WISE Massive & Distant Clusters (MaDCoWS). II.
- Short Name:
- J/ApJS/213/25
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present optical and infrared imaging and optical spectroscopy of galaxy clusters which were identified as part of an all-sky search for high-redshift galaxy clusters, the Massive and Distant Clusters of WISE Survey (MaDCoWS). The initial phase of MaDCoWS combined infrared data from the all-sky data release of the Wide-field Infrared Survey Explorer (WISE) with optical data from the Sloan Digital Sky Survey to select probable z~1 clusters of galaxies over an area of 10000deg^2^. Our spectroscopy confirms 19 new clusters at 0.7<z<1.3, half of which are at z>1, demonstrating the viability of using WISE to identify high-redshift galaxy clusters. The next phase of MaDCoWS will use the greater depth of the AllWISE data release to identify even higher redshift cluster candidates.
- ID:
- ivo://nasa.heasarc/skyview/wise
- Title:
- WISE 3\.4 Micron All-Sky Survey>: All-WISE data release
- Short Name:
- WISE
- Date:
- 14 Feb 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- From the <a href="https://wise2.ipac.caltech.edu/docs/release/allsky">WISE mission site:</a>. <hr> NASA's Wide-field Infrared Survey Explorer (WISE) mapped the sky at 3.4, 4.6, 12 and 22 micrometers in 2010 with an angular resolution of 6.1", 6.4", 6.5" and 12.0" in the four bands. WISE achieved a 5 sigma point source sensitivities better and 0.08, 0.11 1 and 6 mJy in unconfused regions on the ecliptic in the four bands. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodaical background. <p> The WISE All-WISE includes all data taking during the WISE full cryogenic phase, from January 7, 2010 to August 6, 2010, that were processed with improved calibrations and reduction algorithms and combines this with the NEOWISE postcryogenic survey to form the most comprehensive view of the full mid-infrared sky. bibcode=1995ApJ...451..564V,2010ApJ...713..912W <hr> <p> SkyView includes the four WISE bands as separate surveys. Many non-image data products are available at the WISE site. Note that WISE data is distributed in relatively large (>50 MB) image files. When SkyView generates an image for a part of the sky where it has not yet cached the data from the IPAC server there may be a delay as full tiles are downloaded even when only a small fraction of a tile is needed. Images in cached regions, are generated much faster. Access to the WISE data uses the VO SIA interface maintained at IPAC. Even when data is cached, the SIA service must still be available for successful queries. Provenance: WISE Archive (IRSA/IPAC). This is a service of NASA HEASARC.
- ID:
- ivo://CDS.VizieR/J/ApJ/835/280
- Title:
- WISE MIR properties of galaxies in compact groups
- Short Name:
- J/ApJ/835/280
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study the mid-infrared (MIR) properties of galaxies in compact groups and their environmental dependence using the Wide-field Infrared Survey Explorer (WISE) data. We use a volume-limited sample of 670 compact groups and their 2175 member galaxies with M_r_<-19.77 and 0.01<z<0.0741, drawn from Sohn+ (2016, J/ApJS/225/23), which were identified using a friends-of-friends algorithm. Among the 2175 galaxies, 1541 galaxies are detected at WISE 12um with a signal-to-noise ratio greater than 3. Among the 1541 galaxies, 433 AGN-host galaxies are identified by using both optical and MIR classification schemes. Using the remaining 1108 non-AGN galaxies, we find that the MIR [3.4]-[12] colors of compact group early-type galaxies are on average bluer than those of cluster early-type galaxies. When compact groups have both early- and late-type member galaxies, the MIR colors of the late-type members in those compact groups are bluer than the MIR colors of cluster late-type galaxies. As compact groups are located in denser regions, they tend to have larger early-type galaxy fractions and bluer MIR color galaxies. These trends are also seen for neighboring galaxies around compact groups. However, compact group member galaxies always have larger early-type galaxy fractions and bluer MIR colors than their neighboring galaxies. Our findings suggest that the properties of compact group galaxies depend on both internal and external environments of compact groups, and that galaxy evolution is faster in compact groups than in the central regions of clusters.
- ID:
- ivo://CDS.VizieR/J/ApJS/255/10
- Title:
- WISE MIR variability in gamma-ray Seyfert 1 gal.
- Short Name:
- J/ApJS/255/10
- Date:
- 11 Mar 2022
- Publisher:
- CDS
- Description:
- Fermi-LAT's detection of {gamma}-rays from narrow-line Seyfert 1 galaxies (NLS1s) has received increasing attention. Understanding these {gamma}-NLS1s is of interest because they have some properties similar to blazars, which are known to show rapid and large-amplitude variability. Based on the largest sample of {gamma}-NLS1s (25 sources), we carried out a systematic search for rapid mid-infrared (MIR, 3.4 and 4.6{mu}m) variability using the multiepoch data of the Wide-field Infrared Survey Explorer (WISE). We also compared a few variability properties between {gamma}-NLS1s and {gamma}-ray blazars. Our main results are as follows. (1) Thirteen {gamma}-NLS1s showed significant (>3{sigma}) rapid variability in at least one of the two MIR bands. The MIR emission of these sources is dominated by the synchrotron emission of relativistic electrons in the jet. (2) The {gamma}-NLS1s with flat radio spectra are more variable than those not detected in {gamma}-rays. (3) The {gamma}-NLS1s tend to show smaller amplitude of variability as well as lower duty cycle relative to {gamma}-ray blazars. (4) The {gamma}-NLS1s tend to show a trend of bluer-when-brighter on both intraday and long timescales, similar to {gamma}-ray blazars. (5) The {gamma}-NLS1s that are more variable on long timescales have larger amplitudes of variability and higher duty cycles on intraday timescales. (6) In the majority of cases, the {gamma}-NLS1s fall in the WISE Gamma-ray Blazar Strip (WGS). However, we noted migrations outside of the WGS due to significant variability.
- ID:
- ivo://CDS.VizieR/J/A+A/564/A84
- Title:
- WISE model grids for O- and C-rich AGB
- Short Name:
- J/A+A/564/A84
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Since asymptotic giant branch (AGB) stars are bright and extended infrared objects, most Galactic AGB stars saturate the Wide-field Infrared Survey Explorer (WISE) detectors and therefore the WISE magnitudes that are restored by applying point-spread-function fitting need to be verified. Statistical properties of circumstellar envelopes around AGB stars are discussed on the basis of a WISE AGB catalog verified in this way. We cross-matched an AGB star sample with the WISE All-Sky Source Catalog and the Two Mircon All Sky Survey catalog. Infrared Space Observatory (ISO) spectra of a subsample of WISE AGB stars were also exploited. The dust radiation transfer code DUSTY was used to help predict the magnitudes in the W1 and W2 bands, the two WISE bands most affected by saturation, for calibration purpose, and to provide physical parameters of the AGB sample stars for analysis.
- ID:
- ivo://CDS.VizieR/J/ApJ/770/7
- Title:
- WISE/NEOWISE Main Belt asteroids: family members
- Short Name:
- J/ApJ/770/7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using albedos from WISE/NEOWISE to separate distinct albedo groups within the Main Belt asteroids, we apply the Hierarchical Clustering Method to these subpopulations and identify dynamically associated clusters of asteroids. While this survey is limited to the ~35% of known Main Belt asteroids that were detected by NEOWISE, we present the families linked from these objects as higher confidence associations than can be obtained from dynamical linking alone. We find that over one-third of the observed population of the Main Belt is represented in the high-confidence cores of dynamical families. The albedo distribution of family members differs significantly from the albedo distribution of background objects in the same region of the Main Belt; however, interpretation of this effect is complicated by the incomplete identification of lower-confidence family members. In total we link 38298 asteroids into 76 distinct families. This work represents a critical step necessary to debias the albedo and size distributions of asteroids in the Main Belt and understand the formation and history of small bodies in our solar system.